Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Assoc Lab Anim Sci ; 61(4): 361-369, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35750479

ABSTRACT

Molecular-based methods have shown potential for improving pathogen detection and reducing animal use. While increasing evidence supports rodent-free environmental health PCR pathogen detection, limited information is available regarding efficacy for disposable individually ventilated caging systems. In such systems, testing of plenum exhaust air dust is ineffective, and the use of collection media is optimal. We performed a series of studies to compare PCR infectious agent detection with dust collected on media placed in a mouse-free soiled bedding cage, the cage exhaust filter of an occupied sentinel cage, and direct sampling from colony and sentinel mice with traditional soiled bedding mouse sentinels. We hypothesized that after a 3-mo period, testing of filter media agitated in a soiled bedding cage would be equal to or more sensitive than more traditional methods. Agitated media detected Astrovirus-1, segmented filamentous bacteria and Helicobacter ganmani to a degree comparable to testing lid exhaust filter PCR from a sentinel mouse cage, but opportunists such as Staphylococcus aureus and Proteus mirabilis were not detected consistently, and H. hepaticus was not detected at all. Direct sampling of pooled fecal pellets and body swabs from sentinel mice and testing using PCR also failed to reliably detect opportunists and Helicobacter spp. While further work is needed to refine use of filter media in soiled bedding for detection of lower prevalence opportunists, this report provides evidence that a rodent-free method of reliably detecting murine agents in a disposable individually ventilated cage system with cage-level filtration outperforms direct sampling of soiled bedding sentinel mice.


Subject(s)
Housing, Animal , Rodent Diseases , Animals , Bedding and Linens/veterinary , Dust/analysis , Mice , Rodent Diseases/diagnosis , Soil
2.
J Am Assoc Lab Anim Sci ; 57(2): 157-160, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29555005

ABSTRACT

Laboratory animal programs and core laboratories often set service rates based on cost estimates. However, actual costs may be unknown, and service rates may not reflect the actual cost of services. Accurately evaluating the actual costs of services can be challenging and time-consuming. We used a time-driven activity-based costing (ABC) model to determine the cost of services provided by a resource laboratory at our institution. The time-driven approach is a more efficient approach to calculating costs than using a traditional ABC model. We calculated only 2 parameters: the time required to perform an activity and the unit cost of the activity based on employee cost. This method allowed us to rapidly and accurately calculate the actual cost of services provided, including microinjection of a DNA construct, microinjection of embryonic stem cells, embryo transfer, and in vitro fertilization. We successfully implemented a time-driven ABC model to evaluate the cost of these services and the capacity of labor used to deliver them. We determined how actual costs compared with current service rates. In addition, we determined that the labor supplied to conduct all services (10,645 min/wk) exceeded the practical labor capacity (8400 min/wk), indicating that the laboratory team was highly efficient and that additional labor capacity was needed to prevent overloading of the current team. Importantly, this time-driven ABC approach allowed us to establish a baseline model that can easily be updated to reflect operational changes or changes in labor costs. We demonstrated that a time-driven ABC model is a powerful management tool that can be applied to other core facilities as well as to entire animal programs, providing valuable information that can be used to set rates based on the actual cost of services and to improve operating efficiency.


Subject(s)
Laboratories/economics , Models, Economic , Organisms, Genetically Modified , Research/economics , Animals , Costs and Cost Analysis , Humans , Time Factors
3.
J Am Assoc Lab Anim Sci ; 56(6): 752-761, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29256370

ABSTRACT

We evaluated PCR testing of filter tops from cages maintained on an IVC system through which exhaust air is filtered at the cage level as a method for detecting parasite-infected and -infested cages. Cages containing 4 naïve Swiss Webster mice received 360 mL of uncontaminated aspen chip or α-cellulose bedding (n = 18 cages each) and 60 mL of the same type of bedding weekly from each of the following 4 groups of cages housing mice infected or infested with Syphacia obvelata (SO), Aspiculuris tetraptera (AT), Myocoptes musculinus (MC), or Myobia musculi (MB) and Radfordia affinis (RA; 240 mL bedding total). Detection rates were compared at 30, 60, and 90 d after initiating bedding exposure, by using PCR analysis of filter tops (media extract and swabs) and testing of mouse samples (fur swab [direct] PCR testing, fecal flotation, anal tape test, direct examination of intestinal contents, and skin scrape). PCR testing of filter media extract detected 100% of all parasites at 30 d (both bedding types) except for AT (α-cellulose bedding, 67% detection rate); identified more cages with fur mites (MB and MC) than direct PCR when cellulose bedding was used; and was better at detecting parasites than all nonmolecular methods evaluated. PCR analysis of filter media extract was superior to swab and direct PCR for all parasites cumulatively for each bedding type. Direct PCR more effectively detected MC and all parasites combined for aspen chip compared with cellulose bedding. PCR analysis of filter media extract for IVC systems in which exhaust air is filtered at the cage level was shown to be a highly effective environmental testing method.


Subject(s)
Enterobiasis/veterinary , Housing, Animal , Mite Infestations/veterinary , Mites/genetics , Oxyuroidea/isolation & purification , Rodent Diseases/parasitology , Animals , Bedding and Linens/veterinary , Enterobiasis/parasitology , Female , Mice , Mice, Inbred Strains , Mite Infestations/parasitology , Mites/classification , Oxyuroidea/classification , Oxyuroidea/genetics , Polymerase Chain Reaction
4.
J Am Assoc Lab Anim Sci ; 56(1): 32-41, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28905712

ABSTRACT

There is no consensus regarding the best practice for detecting murine pinworm infections. Initially, we evaluated 7 fecal concentration methods by using feces containing Aspiculuris tetraptera (AT) eggs (n = 20 samples per method). Sodium nitrate flotation, sodium nitrate centrifugation, Sheather sugar centrifugation, and zinc sulfate centrifugation detected eggs in 100% of samples; zinc sulfate flotation and water sedimentation detected eggs in 90%. All had better detection rates than Sheather sugar flotation (50%). To determine optimal detection methods, Swiss Webster mice were exposed to Syphacia obvelata (SO; n = 60) or AT (n = 60). We compared the following methods at days 0, 30, and 90, beginning 21 or 28 d after SO and AT exposure, respectively: fecal concentration (AT only), anal tape test (SO only), direct examination of intestinal contents (cecum and colon), Swiss roll histology (cecum and colon), and PCR analysis (pooled fur swab and feces). Detection rates for SO-exposed mice were: PCR analysis, 45%; Swiss roll histology, 30%; intestinal content exam, 27%; and tape test, 27%. The SO detection rate for PCR analysis was significantly greater than that for the tape test. Detection rates for AT-exposed mice were: intestinal content exam, 53%; PCR analysis, 33%; fecal flotation, 22%; and Swiss roll histology, 17%. The AT detection rate of PCR analysis combined with intestinal content examination was greater than for PCR analysis only and the AT detection rate of intestinal content examination was greater than for Swiss roll histology. Combining PCR analysis with intestinal content examination detected 100% of infected animals. No single test detected all positive animals. We recommend combining PCR analysis with intestinal content examination for optimal pinworm detection.


Subject(s)
Enterobiasis/veterinary , Enterobius/isolation & purification , Rodent Diseases/parasitology , Animals , Enterobiasis/metabolism , Feces , Female , Laboratory Animal Science , Mice , Rodent Diseases/diagnosis , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL
...