Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Viruses ; 13(12)2021 12 14.
Article in English | MEDLINE | ID: mdl-34960774

ABSTRACT

The chicken Tva cell surface protein, a member of the low-density lipoprotein receptor family, has been identified as an entry receptor for avian leukosis virus of classic subgroup A and newly emerging subgroup K. Because both viruses represent an important concern for the poultry industry, we introduced a frame-shifting deletion into the chicken tva locus with the aim of knocking-out Tva expression and creating a virus-resistant chicken line. The tva knock-out was prepared by CRISPR/Cas9 gene editing in chicken primordial germ cells and orthotopic transplantation of edited cells into the testes of sterilized recipient roosters. The resulting tva -/- chickens tested fully resistant to avian leukosis virus subgroups A and K, both in in vitro and in vivo assays, in contrast to their susceptible tva +/+ and tva +/- siblings. We also found a specific disorder of the cobalamin/vitamin B12 metabolism in the tva knock-out chickens, which is in accordance with the recently recognized physiological function of Tva as a receptor for cobalamin in complex with transcobalamin transporter. Last but not least, we bring a new example of the de novo resistance created by CRISPR/Cas9 editing of pathogen dependence genes in farm animals and, furthermore, a new example of gene editing in chicken.


Subject(s)
Avian Leukosis Virus/physiology , Avian Proteins/physiology , Chickens/virology , Receptors, Virus/physiology , Vitamin B 12/metabolism , Animals , Avian Leukosis Virus/classification , Avian Proteins/genetics , Chick Embryo , Female , Frameshift Mutation , Gene Editing , Gene Knockout Techniques , Male , Methylmalonic Acid/blood , Receptors, Virus/genetics
2.
J Virol ; 95(8)2021 03 25.
Article in English | MEDLINE | ID: mdl-33504597

ABSTRACT

The Avian sarcoma and leukosis viruses (ASLVs) are important chicken pathogens. Some of the virus subgroups, including ASLV-A and K, utilize the Tva receptor for cell entrance. Though Tva was identified three decades ago, its physiological function remains unknown. Previously, we have noted an intriguing resemblance and orthology between the chicken gene coding for Tva and the human gene coding for CD320, a receptor involved in cellular uptake of transcobalamin (TC) in complex with vitamin B12/cobalamin (Cbl).Here we show that both the transmembrane and the glycosylphosphatidylinositol (GPI)-anchored form of Tva in the chicken cell line DF-1 promotes the uptake of Cbl with help of expressed and purified chicken TC. The uptake of TC-Cbl complex was monitored using an isotope- or fluorophore-labeled Cbl. We show that (i) TC-Cbl is internalized in chicken cells; and (ii) the uptake is lower in the Tva-knockout cells and higher in Tva-overexpressing cells when compared with wild type chicken cells. The relation between physiological function of Tva and its role in infection was elaborated by showing that infection with ASLV subgroups (targeting Tva) impairs the uptake of TC-Cbl, while this is not the case for cells infected with ASLV-B (not recognized by Tva). In addition, exposure of the cells to a high concentration of TC-Cbl alleviates the infection with Tva-dependent ASLV.IMPORTANCE: We demonstrate that the ASLV receptor Tva participates in the physiological uptake of TC-Cbl, because the viral infection suppresses the uptake of Cbl and vice versa. Our results pave the road for future studies addressing the issues: (i) whether a virus infection can be inhibited by TC-Cbl complexes in vivo; and (ii) whether any human virus employs the human TC-Cbl receptor CD320. In broader terms, our study sheds light on the intricate interplay between physiological roles of cellular receptors and their involvement in virus infection.

3.
Proc Natl Acad Sci U S A ; 117(4): 2108-2112, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31964810

ABSTRACT

Avian leukosis virus subgroup J (ALV-J) is an important concern for the poultry industry. Replication of ALV-J depends on a functional cellular receptor, the chicken Na+/H+ exchanger type 1 (chNHE1). Tryptophan residue number 38 of chNHE1 (W38) in the extracellular portion of this molecule is a critical amino acid for virus entry. We describe a CRISPR/Cas9-mediated deletion of W38 in chicken primordial germ cells and the successful production of the gene-edited birds. The resistance to ALV-J was examined both in vitro and in vivo, and the ΔW38 homozygous chickens tested ALV-J-resistant, in contrast to ΔW38 heterozygotes and wild-type birds, which were ALV-J-susceptible. Deletion of W38 did not manifest any visible side effect. Our data clearly demonstrate the antiviral resistance conferred by precise CRISPR/Cas9 gene editing in the chicken. Furthermore, our highly efficient CRISPR/Cas9 gene editing in primordial germ cells represents a substantial addition to genotechnology in the chicken, an important food source and research model.


Subject(s)
Avian Leukosis Virus/genetics , Avian Leukosis/immunology , Avian Proteins/genetics , Poultry Diseases/immunology , Sodium-Hydrogen Exchanger 1/genetics , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/immunology , Animals, Genetically Modified/virology , Avian Leukosis/genetics , Avian Leukosis/virology , Avian Leukosis Virus/classification , Avian Leukosis Virus/physiology , Avian Proteins/immunology , CRISPR-Cas Systems , Chickens , Disease Resistance , Female , Gene Editing , Male , Poultry Diseases/genetics , Poultry Diseases/virology , Sodium-Hydrogen Exchanger 1/immunology
4.
Viruses ; 10(11)2018 11 02.
Article in English | MEDLINE | ID: mdl-30400152

ABSTRACT

Avian leukosis viruses (ALVs), which are pathogens of concern in domestic poultry, utilize specific receptor proteins for cell entry that are both necessary and sufficient for host susceptibility to a given ALV subgroup. This unequivocal relationship offers receptors as suitable targets of selection and biotechnological manipulation with the aim of obtaining virus-resistant poultry. This approach is further supported by the existence of natural knock-outs of receptor genes that segregate in inbred lines of chickens. We used CRISPR/Cas9 genome editing tools to introduce frame-shifting indel mutations into tva, tvc, and tvj loci encoding receptors for the A, C, and J ALV subgroups, respectively. For all three loci, the homozygous frame-shifting indels generating premature stop codons induced phenotypes which were fully resistant to the virus of respective subgroup. In the tvj locus, we also obtained in-frame deletions corroborating the importance of W38 and the four amino-acids preceding it. We demonstrate that CRISPR/Cas9-mediated knock-out or the fine editing of ALV receptor genes might be the first step in the development of virus-resistant chickens.


Subject(s)
Avian Leukosis Virus/physiology , Avian Leukosis/genetics , Avian Leukosis/virology , CRISPR-Cas Systems , Disease Resistance/genetics , Gene Editing , Receptors, Virus/genetics , Animals , Base Sequence , Cell Line , Chickens , Genes, Viral , Genetic Techniques , Genetic Vectors/genetics , RNA, Guide, Kinetoplastida , Receptors, Virus/metabolism
5.
J Virol ; 88(6): 3505-15, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24403579

ABSTRACT

UNLABELLED: Transformation of rodent cells with avian Rous sarcoma virus (RSV) opened new ways to studying virus integration and expression in nonpermissive cells. We were interested in (i) the molecular changes accompanying fusion of RSV-transformed mammalian cells with avian cells leading to virus rescue and (ii) enhancement of this process by retroviral gene products. The RSV-transformed hamster RSCh cell line was characterized as producing only a marginal amount of env mRNA, no envelope glycoprotein, and a small amount of unprocessed Gag protein. Egress of viral unspliced genomic RNA from the nucleus was hampered, and its stability decreased. Cell fusion of the chicken DF-1 cell line with RSCh cells led to production of env mRNA, envelope glycoprotein, and processed Gag and virus-like particle formation. Proteosynthesis inhibition in DF-1 cells suppressed steps leading to virus rescue. Furthermore, new aberrantly spliced env mRNA species were found in the RSCh cells. Finally, we demonstrated that virus rescue efficiency can be significantly increased by complementation with the env gene and the highly expressed gag gene and can be increased the most by a helper virus infection. In summary, Env and Gag synthesis is increased after RSV-transformed hamster cell fusion with chicken fibroblasts, and both proteins provided in trans enhance RSV rescue. We conclude that the chicken fibroblast yields some factor(s) needed for RSV replication, particularly Env and Gag synthesis, in nonpermissive rodent cells. IMPORTANCE: One of the important issues in retrovirus heterotransmission is related to cellular factors that prevent virus replication. Rous sarcoma virus (RSV), a member of the avian sarcoma and leukosis family of retroviruses, is able to infect and transform mammalian cells; however, such transformed cells do not produce infectious virus particles. Using the well-defined model of RSV-transformed rodent cells, we established that the lack of virus replication is due to the absence of chicken factor(s), which can be supplemented by cell fusion. Cell fusion with permissive chicken cells led to an increase in RNA splicing and nuclear export of specific viral mRNAs, as well as synthesis of respective viral proteins and production of virus-like particles. RSV rescue by cell fusion can be potentiated by in trans expression of viral genes in chicken cells. We conclude that rodent cells lack some chicken factor(s) required for proper viral RNA processing and viral protein synthesis.


Subject(s)
Poultry Diseases/virology , Rous sarcoma virus/genetics , Sarcoma, Avian/virology , Animals , Cell Fusion , Cell Line, Transformed , Cell Transformation, Viral , Chickens , Cricetinae , Gene Products, env/genetics , Gene Products, env/metabolism , Gene Products, gag/genetics , Gene Products, gag/metabolism , Genetic Complementation Test , Rous sarcoma virus/physiology
6.
J Virol ; 87(15): 8399-407, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23698309

ABSTRACT

Subgroup J avian leukosis virus (ALV-J) is unique among the avian sarcoma and leukosis viruses in using the multimembrane-spanning cell surface protein Na(+)/H(+) exchanger type 1 (NHE1) as a receptor. The precise localization of amino acids critical for NHE1 receptor activity is key in understanding the virus-receptor interaction and potential interference with virus entry. Because no resistant chicken lines have been described until now, we compared the NHE1 amino acid sequences from permissive and resistant galliform species. In all resistant species, the deletion or substitution of W38 within the first extracellular loop was observed either alone or in the presence of other incidental amino acid changes. Using the ectopic expression of wild-type or mutated chicken NHE1 in resistant cells and infection with a reporter recombinant retrovirus of subgroup J specificity, we studied the effect of individual mutations on the NHE1 receptor capacity. We suggest that the absence of W38 abrogates binding of the subgroup J envelope glycoprotein to ALV-J-resistant cells. Altogether, we describe the functional importance of W38 for virus entry and conclude that natural polymorphisms in NHE1 can be a source of host resistance to ALV-J.


Subject(s)
Avian Leukosis Virus/physiology , Receptors, Virus/genetics , Receptors, Virus/metabolism , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Viral Tropism , Virus Internalization , Animals , Birds , DNA Mutational Analysis , Tryptophan/genetics , Tryptophan/metabolism
7.
J Virol ; 86(4): 2021-30, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22171251

ABSTRACT

The group of closely related avian sarcoma and leukosis viruses (ASLVs) evolved from a common ancestor into multiple subgroups, A to J, with differential host range among galliform species and chicken lines. These subgroups differ in variable parts of their envelope glycoproteins, the major determinants of virus interaction with specific receptor molecules. Three genetic loci, tva, tvb, and tvc, code for single membrane-spanning receptors from diverse protein families that confer susceptibility to the ASLV subgroups. The host range expansion of the ancestral virus might have been driven by gradual evolution of resistance in host cells, and the resistance alleles in all three receptor loci have been identified. Here, we characterized two alleles of the tva receptor gene with similar intronic deletions comprising the deduced branch-point signal within the first intron and leading to inefficient splicing of tva mRNA. As a result, we observed decreased susceptibility to subgroup A ASLV in vitro and in vivo. These alleles were independently found in a close-bred line of domestic chicken and Indian red jungle fowl (Gallus gallus murghi), suggesting that their prevalence might be much wider in outbred chicken breeds. We identified defective splicing to be a mechanism of resistance to ASLV and conclude that such a type of mutation could play an important role in virus-host coevolution.


Subject(s)
Alpharetrovirus/physiology , Avian Proteins/genetics , Chickens/genetics , Genetic Predisposition to Disease , Poultry Diseases/genetics , RNA Splicing , Receptors, Virus/genetics , Sarcoma, Avian/genetics , Sequence Deletion , Alpharetrovirus/genetics , Amino Acid Sequence , Animals , Avian Proteins/metabolism , Base Sequence , Chickens/metabolism , Chickens/virology , Introns , Molecular Sequence Data , Poultry Diseases/metabolism , Poultry Diseases/virology , Receptors, Virus/metabolism , Sarcoma, Avian/metabolism , Sarcoma, Avian/virology
8.
J Virol ; 82(5): 2097-105, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18094190

ABSTRACT

The avian sarcoma and leukosis virus (ASLV) family of retroviruses contains five highly related envelope subgroups (A to E) thought to have evolved from a common viral ancestor in the chicken population. Three genetic loci in chickens determine the susceptibility or resistance of cells to infection by the subgroup A to E ASLVs. Some inbred lines of chickens display phenotypes that are somewhere in between either efficiently susceptible or resistant to infection by specific subgroups of ASLV. The tvb gene encodes the receptor for subgroups B, D, and E ASLVs. The wild-type Tvb(S1) receptor confers susceptibility to subgroups B, D, and E ASLVs. In this study, the genetic defect that accounts for the altered susceptibility of an inbred chicken line, line M, to infection by ASLV(B), ASLV(D), and ASLV(E) was identified. The tvb gene in line M, tvb(r2), encodes a mutant Tvb(S1) receptor protein with a substitution of a serine for a cysteine at position 125 (C125S). Here, we show that the C125S substitution in Tvb(S1) significantly reduces the susceptibility of line M cells to infection by ASLV(B) and ASLV(D) and virtually eliminates susceptibility to ASLV(E) infection both in cultured cells and in the incidence and growth of avian sarcoma virus-induced sarcomas in chickens. The C125S substitution significantly reduces the binding affinity of the Tvb(S1) receptor for the subgroup B, D, and E ASLV envelope glycoproteins. These are the first results that demonstrate a possible role of the cysteine-rich domain 3 in the function of the Tvb receptors.


Subject(s)
Alpharetrovirus/pathogenicity , Amino Acid Substitution , Genetic Predisposition to Disease , Receptors, Virus/physiology , Retroviridae Infections/virology , Tumor Virus Infections/virology , Alleles , Alpharetrovirus/classification , Amino Acid Sequence , Animals , Base Sequence , Cells, Cultured , Chick Embryo , DNA Primers , Flow Cytometry , Membrane Fusion , Molecular Sequence Data , Receptors, Virus/chemistry , Receptors, Virus/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Species Specificity
9.
Avian Pathol ; 36(1): 15-27, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17364506

ABSTRACT

An efficient induction of wasting disease in chickens by avian leukosis virus (ALV), particularly ALV subgroup C, requires >102 infectious units virus inoculated in mid embryogenesis. The most conspicuous symptoms of the disease were induced by ALV subgroup C; however, significant differences in the occurrence of wasting disease were found among individual members of this subgroup. Almost comparable pathogenicity was exhibited by ALV subgroup D, whereas viruses of subgroups B and A proved to be moderately and almost non-pathogenic, respectively. Using antibodies to cellular antigens, tissue alterations were shown clearly in ALV-C-infected chickens. An essential feature was depletion of lymphocytes in the thymus, bursa and spleen. While the number of dendritic cells in the bursa was increased, their representation in the thymus and spleen was reduced. In the spleen, however, the reduction of dendritic cells concerned only an ellipsoid compartment, which in itself was also markedly reduced. An increased number of macrophages in the thymus and spleen corresponded with the observed general activation of the monocyte-macrophage system. In the spleen, CD4+ T cells were reduced while CD8+ T cells were increased. In agreement with this finding was a failure of chickens to respond to Brucella antigen and an inability of their splenocytes to respond to Concanavalin A, both of which pointed to the damage of immune reactivity. Variation in the pathogenicity among individual ALV strains provides ground for depicting gene sequences playing an important role in ALV acute pathogenicity.


Subject(s)
Avian Leukosis Virus/classification , Avian Leukosis Virus/pathogenicity , Avian Leukosis/virology , Chickens/virology , Poultry Diseases/virology , Animals , Bursa of Fabricius/cytology , Spleen/cytology , Thymus Gland/pathology , Virulence
10.
J Virol ; 79(16): 10408-19, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16051833

ABSTRACT

The five highly related envelope subgroups of the avian sarcoma and leukosis viruses (ASLVs), subgroup A [ASLV(A)] to ASLV(E), are thought to have evolved from an ancestral envelope glycoprotein yet utilize different cellular proteins as receptors. Alleles encoding the subgroup A ASLV receptors (Tva), members of the low-density lipoprotein receptor family, and the subgroup B, D, and E ASLV receptors (Tvb), members of the tumor necrosis factor receptor family, have been identified and cloned. However, alleles encoding the subgroup C ASLV receptors (Tvc) have not been cloned. Previously, we established a genetic linkage between tvc and several other nearby genetic markers on chicken chromosome 28, including tva. In this study, we used this information to clone the tvc gene and identify the Tvc receptor. A bacterial artificial chromosome containing a portion of chicken chromosome 28 that conferred susceptibility to ASLV(C) infection was identified. The tvc gene was identified on this genomic DNA fragment and encodes a 488-amino-acid protein most closely related to mammalian butyrophilins, members of the immunoglobulin protein family. We subsequently cloned cDNAs encoding Tvc that confer susceptibility to infection by subgroup C viruses in chicken cells resistant to ASLV(C) infection and in mammalian cells that do not normally express functional ASLV receptors. In addition, normally susceptible chicken DT40 cells were resistant to ASLV(C) infection after both tvc alleles were disrupted by homologous recombination. Tvc binds the ASLV(C) envelope glycoproteins with low-nanomolar affinity, an affinity similar to that of binding of Tva and Tvb with their respective envelope glycoproteins. We have also identified a mutation in the tvc gene in line L15 chickens that explains why this line is resistant to ASLV(C) infection.


Subject(s)
Avian Leukosis Virus/physiology , Avian Sarcoma Viruses/physiology , Membrane Glycoproteins/physiology , Receptors, Virus/physiology , Amino Acid Sequence , Animals , Base Sequence , Butyrophilins , Cells, Cultured , Chickens , Cloning, Molecular , Codon, Terminator , Molecular Sequence Data , Receptors, Virus/chemistry , Receptors, Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...