Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 174(1): 154-171, 2017 May.
Article in English | MEDLINE | ID: mdl-28348066

ABSTRACT

The accumulation of proanthocyanidins is regulated by a complex of transcription factors composed of R2R3 MYB, basic helix-loop-helix, and WD40 proteins that activate the promoters of biosynthetic genes. In poplar (genus Populus), MYB134 is known to regulate proanthocyanidin biosynthesis by activating key flavonoid genes. Here, we characterize a second MYB regulator of proanthocyanidins, MYB115. Transgenic poplar overexpressing MYB115 showed a high-proanthocyanidin phenotype and reduced salicinoid accumulation, similar to the effects of MYB134 overexpression. Transcriptomic analysis of MYB115- and MYB134-overexpressing poplar plants identified a set of common up-regulated genes encoding proanthocyanidin biosynthetic enzymes and several novel uncharacterized MYB transcriptional repressors. Transient expression experiments demonstrated the capacity of both MYB134 and MYB115 to activate flavonoid promoters, but only in the presence of a basic helix-loop-helix cofactor. Yeast two-hybrid experiments confirmed the direct interaction of these transcription factors. The unexpected identification of dihydromyricetin in leaf extracts of both MYB115- and MYB134-overexpressing poplar led to the discovery of enhanced flavonoid B-ring hydroxylation and an increased proportion of prodelphinidins in proanthocyanidin of the transgenics. The dramatic hydroxylation phenotype of MYB115 overexpressors is likely due to the up-regulation of both flavonoid 3',5'-hydroxylases and cytochrome b5 Overall, this work provides new insight into the complexity of the gene regulatory network for proanthocyanidin synthesis in poplar.


Subject(s)
Plant Proteins/metabolism , Populus/metabolism , Proanthocyanidins/biosynthesis , Transcription Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Plants, Genetically Modified , Populus/cytology , Populus/genetics , Protein Binding , Transcription Factors/classification , Transcription Factors/genetics , Two-Hybrid System Techniques
2.
Plant Physiol ; 168(1): 94-106, 2015 May.
Article in English | MEDLINE | ID: mdl-25829465

ABSTRACT

Western redcedar (WRC; Thuja plicata) produces high amounts of oxygenated thujone monoterpenoids associated with resistance against herbivore feeding, particularly ungulate browsing. Thujones and other monoterpenoids accumulate in glandular structures in the foliage of WRC. Thujones are produced from (+)-sabinene by sabinol and sabinone. Using metabolite analysis, enzyme assays with WRC tissue extracts, cloning, and functional characterization of cytochrome P450 monooxygenases, we established that trans-sabin-3-ol but not cis-sabin-3-ol is the intermediate in thujone biosynthesis in WRC. Based on transcriptome analysis, full-length complementary DNA cloning, and characterization of expressed P450 proteins, we identified CYP750B1 and CYP76AA25 as the enzymes that catalyze the hydroxylation of (+)-sabinene to trans-sabin-3-ol. Gene-specific transcript analysis in contrasting WRC genotypes producing high and low amounts of monoterpenoids, including a glandless low-terpenoid clone, as well as assays for substrate specificity supported a biological role of CYP750B1 in α- and ß-thujone biosynthesis. This P450 belongs to the apparently gymnosperm-specific CYP750 family and is, to our knowledge, the first member of this family to be functionally characterized. In contrast, CYP76AA25 has a broader substrate spectrum, also converting the sesquiterpene farnesene and the herbicide isoproturon, and its transcript profiles are not well correlated with thujone accumulation.


Subject(s)
Biocatalysis , Biosynthetic Pathways , Cytochrome P-450 Enzyme System/metabolism , Monoterpenes/metabolism , Thuja/enzymology , Bicyclic Monoterpenes , Gene Expression Regulation, Plant , Genes, Plant , Genetic Association Studies , Hydroxylation , Molecular Sequence Data , Monoterpenes/chemistry , NAD/metabolism , Phenylurea Compounds/metabolism , Phylogeny , Plant Bark/metabolism , Plant Leaves/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stereoisomerism , Substrate Specificity , Terpenes/metabolism , Thuja/genetics , Tissue Extracts
3.
Planta ; 240(3): 497-511, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24923676

ABSTRACT

MAIN CONCLUSION: The apple MdMYB9 gene encodes a positive regulator of proanthocyanidin synthesis that activates anthocyanidin reductase promoters from apple and poplar via interaction with basic helix-loop-helix proteins. The regulation of proanthocyanidins (PAs, condensed tannins) is of great importance in food plants due to the many benefits of PAs in the human diet. Two candidate flavonoid MYB regulators, MdMYB9 and MdMYB11, were cloned from apple (Malus × domestica) based on their similarity to known MYB PA regulators. Transcript accumulation of both MdMYB9 and MdMYB11 was induced by high light and wounding, similar to the poplar (Populus spp) PA regulator PtMYB134. In transient activation assays with various basic helix-loop-helix (bHLH) co-regulators, MdMYB9 activated apple and poplar anthocyanidin reductase (ANR) promoters, while MdMYB11 showed no activity. Potential transcription factor binding elements were found within several ANR promoters, and the importance of the bHLH binding site (E-box) on ANR promoter activation was demonstrated via mutational analysis. The ability of MdMYB9 and PtMYB134 to reciprocally activate ANR promoters from both apple and poplar and to partner with heterologous bHLH co-factors from these plants confirms the high degree of conservation of PA regulatory complexes across species. The similarity in apple and poplar PA regulation suggests that regulatory genes from poplar could be effectively employed for metabolic engineering of the PA pathway in apple.


Subject(s)
Gene Expression Regulation, Plant , Malus/genetics , Populus/genetics , Proanthocyanidins/metabolism , Transcription Factors/genetics , Amino Acid Sequence , Arabidopsis/genetics , Base Sequence , E-Box Elements , Flavonoids/metabolism , Molecular Sequence Data , Phylogeny , Promoter Regions, Genetic
4.
Plant Physiol ; 158(1): 200-24, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22086422

ABSTRACT

Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of blueberry flavonoid biosynthesis.


Subject(s)
Abscisic Acid/metabolism , Blueberry Plants/genetics , Blueberry Plants/metabolism , Flavonoids/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Base Sequence , Blueberry Plants/growth & development , Cytochrome P-450 Enzyme System , Cytokinins/metabolism , Expressed Sequence Tags , Flavonoids/genetics , Flavonols/metabolism , Fruit/genetics , Fruit/growth & development , Gene Expression Profiling , Indoleacetic Acids/metabolism , Molecular Sequence Data , Proanthocyanidins/genetics , Proanthocyanidins/metabolism , Promoter Regions, Genetic
5.
Planta ; 233(6): 1185-97, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21327819

ABSTRACT

Berberine, palmatine and dehydrocoreximine are end products of protoberberine biosynthesis. These quaternary protoberberines are elicitor inducible and, like other phytoalexins, are highly oxidized. The oxidative potential of these compounds is derived from a diverse array of biosynthetic steps involving hydroxylation, intra-molecular C-C coupling, methylenedioxy bridge formation and a dehydrogenation reaction as the final step in the biosynthesis. For the berberine biosynthetic pathway, the identification of the dehydrogenase gene is the last remaining uncharacterized step in the elucidation of the biosynthesis at the gene level. An enzyme able to catalyze these reactions, (S)-tetrahydroprotoberberine oxidase (STOX, EC 1.3.3.8), was originally purified in the 1980s from suspension cells of Berberis wilsoniae and identified as a flavoprotein (Amann et al. 1984). We report enzymatic activity from recombinant STOX expressed in Spodoptera frugiperda Sf9 insect cells. The coding sequence was derived successively from peptide sequences of purified STOX protein. Furthermore, a recombinant oxidase with protoberberine dehydrogenase activity was obtained from a cDNA library of Argemone mexicana, a traditional medicinal plant that contains protoberberine alkaloids. The relationship of the two enzymes is discussed regarding their enzymatic activity, phylogeny and the alkaloid occurrence in the plants. Potential substrate binding and STOX-specific amino acid residues were identified based on sequence analysis and homology modeling.


Subject(s)
Argemone/enzymology , Berberis/enzymology , Oxidoreductases Acting on CH-CH Group Donors/biosynthesis , Amino Acid Sequence , Animals , Argemone/genetics , Argemone/metabolism , Base Sequence , Berberine Alkaloids/metabolism , Berberis/genetics , Berberis/metabolism , Enzyme Activation , Flavoproteins/metabolism , Gene Expression Regulation, Plant , Insecta/enzymology , Insecta/genetics , Molecular Sequence Data , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Phylogeny , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Sequence Homology , Sesquiterpenes/metabolism , Transformation, Genetic , Phytoalexins
6.
Arch Biochem Biophys ; 507(1): 186-93, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21094631

ABSTRACT

Formation of the methylenedioxy bridge is an integral step in the biosynthesis of benzo[c]phenanthridine and protoberberine alkaloids in the Papaveraceae family of plants. This reaction in plants is catalyzed by cytochrome P450-dependent enzymes. Two cDNAs that encode cytochrome P450 enzymes belonging to the CYP719 family were identified upon interrogation of an EST dataset prepared from 2-month-old plantlets of the Mexican prickly poppy Argemone mexicana that accumulated the benzo[c]phenanthridine alkaloid sanguinarine and the protoberberine alkaloid berberine. CYP719A13 and CYP719A14 are 58% identical to each other and 77% and 60% identical, respectively, to stylopine synthase CYP719A2 of benzo[c]phenanthridine biosynthesis in Eschscholzia californica. Functional heterologous expression of CYP719A14 and CYP719A13 in Spodoptera frugiperda Sf9 cells produced recombinant enzymes that catalyzed the formation of the methylenedioxy bridge of (S)-cheilanthifoline from (S)-scoulerine and of (S)-stylopine from (S)-cheilanthifoline, respectively. Twenty-seven potential substrates were tested with each enzyme. Whereas CYP719A14 transformed only (S)-scoulerine to (S)-cheilanthifoline (K(m) 1.9±0.3; k(cat)/K(m) 1.7), CYP719A13 converted (S)-tetrahydrocolumbamine to (S)-canadine (K(m) 2.7±1.3; k(cat)/K(m) 12.8), (S)-cheilanthifoline to (S)-stylopine (K(m) 5.2±3.0; k(cat)/K(m) 2.6) and (S)-scoulerine to (S)-nandinine (K(m) 8.1±1.9; k(cat)/K(m) 0.7). These results indicate that although CYP719A14 participates in only sanguinarine biosynthesis, CYP719A13 can be involved in both sanguinarine and berberine formation in A. mexicana.


Subject(s)
Anti-Bacterial Agents/metabolism , Argemone/enzymology , Benzophenanthridines/metabolism , Berberine Alkaloids/metabolism , Cytochrome P-450 Enzyme System/metabolism , Isoquinolines/metabolism , Argemone/genetics , Argemone/metabolism , Benzylisoquinolines/metabolism , Cytochrome P-450 Enzyme System/genetics , Molecular Sequence Data , Phylogeny
7.
Phytochemistry ; 70(15-16): 1696-707, 2009.
Article in English | MEDLINE | ID: mdl-19665152

ABSTRACT

Benzylisoquinoline alkaloids (BIAs) are a group of nitrogen-containing plant secondary metabolites comprised of an estimated 2500 identified structures. In BIA metabolism, (S)-reticuline is a key branch-point intermediate that can be directed into several alkaloid subtypes with different structural skeleton configurations. The morphinan alkaloids are one subclass of BIAs produced in only a few plant species, most notably and abundantly in the opium poppy (Papaver somniferum). Comparative transcriptome analysis of opium poppy and several other Papaver species that do not accumulate morphinan alkaloids showed that known genes encoding BIA biosynthetic enzymes are expressed at higher levels in P. somniferum. Three unknown cDNAs that are co-ordinately expressed with several BIA biosynthetic genes were identified as enzymes in the pathway. One of these enzymes, salutaridine reductase (SalR), which is specific for the production of morphinan alkaloids, was isolated and heterologously overexpressed in its active form not only from P. somniferum, but also from Papaver species that do not produce morphinan alkaloids. SalR is a member of a class of short chain dehydrogenase/reductases (SDRs) that are active as monomers and possess an extended amino acid sequence compared with classical SDRs. Homology modelling and substrate docking revealed the substrate binding site for SalR. The amino acids residues conferring salutaridine binding were compared to several members of the SDR family from different plant species, which non-specifically reduce (-)-menthone to (+)-neomenthol. Previously, it was shown that some of these proteins are involved in plant defence. The recruitment of specific monomeric SDRs from monomeric SDRs involved in plant defence is discussed.


Subject(s)
Alkaloids/isolation & purification , Benzylisoquinolines/isolation & purification , Evolution, Molecular , Morphine/isolation & purification , Papaver/metabolism , Alkaloids/chemistry , Alkaloids/metabolism , Benzylisoquinolines/chemistry , Defense Mechanisms , Molecular Structure , Morphine/chemistry , Morphine/metabolism , Papaver/chemistry , Papaver/genetics , Stereoisomerism , Structure-Activity Relationship
8.
J Biol Chem ; 284(36): 24432-42, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19567876

ABSTRACT

Morphine is a powerful analgesic natural product produced by the opium poppy Papaver somniferum. Although formal syntheses of this alkaloid have been reported, the morphine molecule contains five stereocenters and a C-C phenol linkage that to date render a total synthesis of morphine commercially unfeasible. The C-C phenol-coupling reaction along the biosynthetic pathway to morphine in opium poppy is catalyzed by the cytochrome P450-dependent oxygenase salutaridine synthase. We report herein on the identification of salutaridine synthase as a member of the CYP719 family of cytochromes P450 during a screen of recombinant cytochromes P450 of opium poppy functionally expressed in Spodoptera frugiperda Sf9 cells. Recombinant CYP719B1 is a highly stereo- and regioselective enzyme; of forty-one compounds tested as potential substrates, only (R)-reticuline and (R)-norreticuline resulted in formation of a product (salutaridine and norsalutaridine, respectively). To date, CYP719s have been characterized catalyzing only the formation of a methylenedioxy bridge in berberine biosynthesis (canadine synthase, CYP719A1) and in benzo[c]phenanthridine biosynthesis (stylopine synthase, CYP719A14). Previously identified phenol-coupling enzymes of plant alkaloid biosynthesis belong only to the CYP80 family of cytochromes. CYP719B1 therefore is the prototype for a new family of plant cytochromes P450 that catalyze formation of a phenol-couple.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Morphinans/chemistry , Morphine/biosynthesis , Papaver/enzymology , Plant Proteins/chemistry , Amino Acid Sequence , Animals , Catalysis , Cell Line , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression , Molecular Sequence Data , Morphinans/metabolism , Morphine/chemistry , Papaver/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Proteins , Spodoptera
9.
Plant J ; 52(6): 1041-51, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17916111

ABSTRACT

Plant heterotrimeric G-proteins are involved in a variety of signaling pathways, though only one alpha and a few betagamma isoforms of their subunits exist. In isolated plasma membranes of California poppy (Eschscholzia californica), the plant-specific Galpha subunit was isolated and identified immunologically and by homology of the cloned gene with that of several plants. In the same membrane, phospholipase A(2) (PLA(2)) was activated by yeast elicitor only if GTPgammaS (an activator of Galpha) was present. From the cholate-solubilized membrane proteins, PLA(2) was co-precipitated together with Galpha by a polyclonal antiserum raised against the recombinant Galpha. In this immunoprecipitate and in the plasma membrane (but not in the Galpha-free supernatant) PLA(2) was stimulated by GTPgammaS. Plasma membranes and immunoprecipitates obtained from antisense transformants with a low Galpha content allowed no such stimulation. An antiserum raised against the C-terminus (which in animal Galphas is located near the target coupling site) precipitated Galpha without any PLA(2) activity. Using non-denaturing PAGE, complexes of solubilized plasma membrane proteins were visualized that contained Galpha plus PLA(2) activity and dissociated at pH 9.5. At this pH, PLA(2) was no longer stimulated by GTPgammaS. It is concluded that a distinct fraction of the plasma membrane-bound PLA(2) exists in a detergent-resistant complex with Galpha that can be dissociated at pH 9.5. This complex allows the Galpha-mediated activation of PLA(2).


Subject(s)
Cell Membrane/metabolism , Eschscholzia/metabolism , GTP-Binding Protein alpha Subunits/metabolism , Phospholipases A2/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Electrophoresis, Polyacrylamide Gel , Eschscholzia/genetics , GTP-Binding Protein alpha Subunits/genetics , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Guanosine Triphosphate/metabolism , Hydrogen-Ion Concentration , Immunoprecipitation , Molecular Sequence Data , Phospholipases A2/genetics , Plant Proteins/genetics , Protein Binding , Sequence Homology, Amino Acid , Signal Transduction
10.
Plant J ; 48(2): 177-92, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16968522

ABSTRACT

Plants of the order Ranunculales, especially members of the species Papaver, accumulate a large variety of benzylisoquinoline alkaloids with about 2500 structures, but only the opium poppy (Papaver somniferum) and Papaver setigerum are able to produce the analgesic and narcotic morphine and the antitussive codeine. In this study, we investigated the molecular basis for this exceptional biosynthetic capability by comparison of alkaloid profiles with gene expression profiles between 16 different Papaver species. Out of 2000 expressed sequence tags obtained from P. somniferum, 69 show increased expression in morphinan alkaloid-containing species. One of these cDNAs, exhibiting an expression pattern very similar to previously isolated cDNAs coding for enzymes in benzylisoquinoline biosynthesis, showed the highest amino acid identity to reductases in menthol biosynthesis. After overexpression, the protein encoded by this cDNA reduced the keto group of salutaridine yielding salutaridinol, an intermediate in morphine biosynthesis. The stereoisomer 7-epi-salutaridinol was not formed. Based on its similarities to a previously purified protein from P. somniferum with respect to the high substrate specificity, molecular mass and kinetic data, the recombinant protein was identified as salutaridine reductase (SalR; EC 1.1.1.248). Unlike codeinone reductase, an enzyme acting later in the pathway that catalyses the reduction of a keto group and which belongs to the family of the aldo-keto reductases, the cDNA identified in this study as SalR belongs to the family of short chain dehydrogenases/reductases and is related to reductases in monoterpene metabolism.


Subject(s)
Alkaloids/metabolism , Morphine/metabolism , Oxidoreductases/metabolism , Papaver/enzymology , Plant Proteins/metabolism , Alkaloids/analysis , Alkaloids/chemistry , Amino Acid Sequence , Cluster Analysis , DNA, Complementary/chemistry , Expressed Sequence Tags , Gene Expression Profiling , Molecular Sequence Data , Morphinans/chemistry , Morphinans/metabolism , Morphine/chemistry , Oxidoreductases/chemistry , Oxidoreductases/genetics , Papaver/chemistry , Papaver/genetics , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , RNA, Messenger/metabolism , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Sequence Analysis, DNA , Sequence Analysis, Protein , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...