Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 386, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36693825

ABSTRACT

Ultrafast optical-domain spectroscopies allow to monitor in real time the motion of nuclei in molecules. Achieving element-selectivity had to await the advent of time resolved X-ray spectroscopy, which is now commonly carried at X-ray free electron lasers. However, detecting light element that are commonly encountered in organic molecules, remained elusive due to the need to work under vacuum. Here, we present an impulsive stimulated Raman scattering (ISRS) pump/carbon K-edge absorption probe investigation, which allowed observation of the low-frequency vibrational modes involving specific selected carbon atoms in the Ibuprofen RS dimer. Remarkably, by controlling the probe light polarization we can preferentially access the enantiomer of the dimer to which the carbon atoms belong.

2.
Phys Rev Lett ; 125(15): 155703, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33095640

ABSTRACT

A liquid carbon (l-C) sample is generated through constant volume heating exposing an amorphous carbon foil to an intense ultrashort laser pulse. Time-resolved x-ray absorption spectroscopy at the C K edge is used to monitor the dynamics of the melting process revealing a subpicosecond rearrangement of the electronic structure associated with a sudden change of the C bonding hybridization. The obtained l-C sample, resulting from a nonthermal melting mechanism, reaches a transient equilibrium condition with a temperature of about 14 200 K and pressure in the order of 0.5 Mbar in about 0.3 ps, prior to hydrodynamic expansion. A detailed analysis of the atomic and electronic structure in solid-density l-C based on time-resolved x-ray absorption spectroscopy and theoretical simulations is presented. The method can be fruitfully used for extending the experimental investigation of the C phase diagram in a vast unexplored region covering the 10^{3}-10^{4} K temperature range with pressures up to 1 Mbar.

3.
Phys Chem Chem Phys ; 22(20): 11583-11592, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32400802

ABSTRACT

The human telomeric G-quadruplex structural motif of DNA has come to be known as a new and stimulating target for anticancer drug discovery. Small molecules that interact with G-quadruplex structures in a selective way have gained impressive interest in recent years as they may serve as potential therapeutic agents. Here, we show how circular dichroism, UV resonance Raman and small angle X-ray scattering spectroscopies can be effectively combined to provide insights into structural and molecular aspects of the interaction between human telomeric quadruplexes and ligands. This study focuses on the ability of berberine and palmatine to bind with human telomeric quadruplexes and provides analysis of the conformational landscape visited by the relevant complexes upon thermal unfolding. With increasing temperature, both free and bound G-quadruplexes undergo melting through a multi-state process, populating different intermediate states. Despite the structural similarity of the two ligands, valuable distinctive features characterising their interaction with the G-quadruplex emerged from our multi-technique approach.


Subject(s)
Berberine Alkaloids/metabolism , Berberine/metabolism , DNA/metabolism , G-Quadruplexes , Berberine/chemistry , Berberine Alkaloids/chemistry , Circular Dichroism , DNA/chemistry , DNA/genetics , Humans , Ligands , Scattering, Small Angle , Spectrum Analysis, Raman , X-Ray Diffraction
4.
Struct Dyn ; 6(4): 040901, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31372368

ABSTRACT

The rapid development of extreme ultraviolet (EUV) and x-ray ultrafast coherent light sources such as free electron lasers (FELs) has triggered the extension of wave-mixing techniques to short wavelengths. This class of experiments, based on the interaction of matter with multiple light pulses through the Nth order susceptibility, holds the promise of combining intrinsic ultrafast time resolution and background-free signal detection with nanometer spatial resolution and chemical specificity. A successful approach in this direction has been the combination of the unique characteristics of the seeded FEL FERMI with dedicated four-wave-mixing (FWM) setups, which leads to the demonstration of EUV-based transient grating (TG) spectroscopy. In this perspective paper, we discuss how the TG approach can be extended toward more general FWM spectroscopies by exploring the intrinsic multiparameter nature of nonlinear processes, which derives from the ability of controlling the properties of each field independently.

5.
Sci Adv ; 5(7): eaaw5805, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31360768

ABSTRACT

Advances in developing ultrafast coherent sources operating at extreme ultraviolet (EUV) and x-ray wavelengths allow the extension of nonlinear optical techniques to shorter wavelengths. Here, we describe EUV transient grating spectroscopy, in which two crossed femtosecond EUV pulses produce spatially periodic nanoscale excitations in the sample and their dynamics is probed via diffraction of a third time-delayed EUV pulse. The use of radiation with wavelengths down to 13.3 nm allowed us to produce transient gratings with periods as short as 28 nm and observe thermal and coherent phonon dynamics in crystalline silicon and amorphous silicon nitride. This approach allows measurements of thermal transport on the ~10-nm scale, where the two samples show different heat transport regimes, and can be applied to study other phenomena showing nontrivial behaviors at the nanoscale, such as structural relaxations in complex liquids and ultrafast magnetic dynamics.

6.
Phys Rev Lett ; 120(2): 023901, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29376703

ABSTRACT

Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (∼284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.

7.
Phys Chem Chem Phys ; 19(33): 22555-22563, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28809977

ABSTRACT

UV Raman and Brillouin light scattering (BLS) experiments have been used in this study to explore the complex phase change behavior occurring in pH-responsive polysaccharide hydrogels as a function of temperature. Due to the different physical quantities measured by the two techniques, the joint analysis of Raman and BLS spectra has provided an unprecedented large-scale characterization of the molecular rearrangements and of the different kinds of hydrophilic and hydrophobic interactions that cooperate to determine the phase transformation observed in these hydrogels during the heating of the gel. As the main result, the analysis of the Raman and BLS spectra showed the existence of a correlation between the local (molecular) and collective properties of the gels during the phase transformation undergone by the system, which is markedly triggered by pH. The joint set of experimental results suggests a model according to which the mechanism of pH dependence in the hydrogels under investigation is dominated by the interactions involving the hydrophobic parts of the polymer skeleton, whereas the solvation process observed under heating of the gels is driven by the progressive distancing of the polymer domains among them, as monitored by the Brillouin sound velocity.

8.
Faraday Discuss ; 194: 283-303, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27711831

ABSTRACT

The development of free electron laser (FEL) sources has provided an unprecedented bridge between the scientific communities working with ultrafast lasers and extreme ultraviolet (XUV) and X-ray radiation. Indeed, in recent years an increasing number of FEL-based applications have exploited methods and concepts typical of advanced optical approaches. In this context, we recently used a seeded FEL to demonstrate a four-wave-mixing (FWM) process stimulated by coherent XUV radiation, namely the XUV transient grating (X-TG). We hereby report on X-TG measurements carried out on a sample of silicon nitride (Si3N4). The recorded data bears evidence for two distinct signal decay mechanisms: one occurring on a sub-ps timescale and one following slower dynamics extending throughout and beyond the probed timescale range (100 ps). The latter is compatible with a slower relaxation (time decay > ns), that may be interpreted as the signature of thermal diffusion modes. From the peak intensity of the X-TG signal we could estimate a value of the effective third-order susceptibility which is substantially larger than that found in SiO2, so far the only sample with available X-TG data. Furthermore, the intensity of the time-coincidence peak shows a linear dependence on the intensity of the three input beams, indicating that the measurements were performed in the weak field regime. However, the timescale of the ultrafast relaxation exhibits a dependence on the intensity of the XUV radiation. We interpreted the observed behaviour as the generation of a population grating of free-electrons and holes that, on the sub-ps timescale, relaxes to generate lattice excitations. The background free detection inherent to the X-TG approach allowed the determination of FEL-induced electron dynamics with a sensitivity largely exceeding that of transient reflectivity and transmissivity measurements, usually employed for this purpose.

9.
Soft Matter ; 12(43): 8861-8868, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27734051

ABSTRACT

The focus of the present work is to shed light on possible modifications of the molecular properties of polysaccharide hydrogels induced by the establishment of specific non-covalent interactions during the loading of a guest compound inside the gel phase. With this aim, a case study of the encapsulation of caffeine (Caf) inside cyclodextrin-based hydrogels, namely, cyclodextrin nanosponges (NS), is systematically investigated here by using UV Raman scattering experiments. The UV Raman spectra of the hydrogels, analysed as a function of temperature, concentration of the guest molecule loaded in the gel phase and pH, prove particularly informative both on the structural rearrangements of the hydrophobic/hydrophilic groups of the polymeric network and on the breaking/formation of specific guest-matrix interactions. Analysis of the temperature dependence of dynamical parameters, i.e., the dephasing time associated with specific vibrational modes of the polymer backbone, enables the proposal of a molecular picture in which the loading of Caf in NS hydrogels tends to favour access of the water solvent to the more hydrophobic portions of the polymer matrix, which is in turn reflected in a marked increase in the solvation of the whole system. The achievements of this work appear of interest with respect to the design of new possible strategies for controlling the diffusion/release of bioactive molecules inside hydrogel networks, besides corroborating the potential of UV Raman scattering experiments to give new molecular insights into complex phenomena affecting hydrogel phases.

10.
Phys Chem Chem Phys ; 18(17): 12252-9, 2016 04 28.
Article in English | MEDLINE | ID: mdl-27081681

ABSTRACT

The fundamental question of how the reorganization of the hydrogen-bond (HB) network of water is influenced by the combination of nano-confinement and hydrophobic/hydrophilic solvation effects is addressed here using a spectroscopic study of water absorbed in a model, pH-sensitive polysaccharide hydrogel. The effects of temperature, hydration level and pH on the vibrational dynamics associated with the water molecules and the polymer skeleton are disentangled and analysed by a complementary and combined use of UV-Raman scattering and IR spectroscopy. The experimental data give evidence that the solvation effects in the hydrogel matrix are essentially dominated by the hydration of more hydrophobic parts of the polymer network, while the effect of pH on the HB reorganization of confined water molecules is found to be similar to that induced by cooling of the system. A tentative explanation of these results has been provided in terms of interplay between different kinds of interactions, i.e. hydrophobic vs. hydrophilic.

11.
Struct Dyn ; 3(2): 023604, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26798835

ABSTRACT

High-energy density extreme ultraviolet radiation delivered by the FERMI seeded free-electron laser has been used to create an exotic nonequilibrium state of matter in a titanium sample characterized by a highly excited electron subsystem at temperatures in excess of 10 eV and a cold solid-density ion lattice. The obtained transient state has been investigated through ultrafast absorption spectroscopy across the Ti M2,3-edge revealing a drastic rearrangement of the sample electronic structure around the Fermi level occurring on a time scale of about 100 fs.

12.
Article in English | MEDLINE | ID: mdl-26274117

ABSTRACT

A composite metallic foil (Al/Mg/Al) has been exposed to intense sub-100 fs free electron laser (FEL) pulses and driven to ultrafast massive photoionization. The resulting nonequilibrium state of matter has been monitored through absorption spectroscopy across the L(2,3) edge of Mg as a function of the FEL fluence. The raw spectroscopic data indicate that at about 100J/cm(2) the main absorption channels of the sample, i.e., Mg (2p→free) and oxidized Al (valence→free), are almost saturated. The spectral behavior of the induced transparency has been interpreted with an analytical approach based on an effective ionization potential of the generated solid-density plasma.

13.
Nature ; 520(7546): 205-8, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25855456

ABSTRACT

Four-wave mixing (FWM) processes, based on third-order nonlinear light-matter interactions, can combine ultrafast time resolution with energy and wavevector selectivity, and enable the exploration of dynamics inaccessible by linear methods. The coherent and multi-wave nature of the FWM approach has been crucial in the development of advanced technologies, such as silicon photonics, subwavelength imaging and quantum communications. All these technologies operate at optical wavelengths, which limits the spatial resolution and does not allow the probing of excitations with energy in the electronvolt range. Extension to shorter wavelengths--that is, the extreme ultraviolet and soft-X-ray ranges--would allow the spatial resolution to be improved and the excitation energy range to be expanded, as well as enabling elemental selectivity to be achieved by exploiting core resonances. So far, FWM applications at such wavelengths have been prevented by the absence of coherent sources of sufficient brightness and of suitable experimental set-ups. Here we show how transient gratings, generated by the interference of coherent extreme-ultraviolet pulses delivered by the FERMI free-electron laser, can be used to stimulate FWM processes at suboptical wavelengths. Furthermore, we have demonstrated the possibility of observing the time evolution of the FWM signal, which shows the dynamics of coherent excitations as molecular vibrations. This result opens the way to FWM with nanometre spatial resolution and elemental selectivity, which, for example, would enable the investigation of charge-transfer dynamics. The theoretical possibility of realizing these applications has already stimulated ongoing developments of free-electron lasers: our results show that FWM at suboptical wavelengths is feasible, and we hope that they will enable advances in present and future photon sources.

14.
Phys Chem Chem Phys ; 17(15): 10274-82, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25798878

ABSTRACT

A detailed experimental and theoretical vibrational analysis of hydrogels of ß-cyclodextrin nanosponges (ß-CDNS), obtained by polymerization of ß-cyclodextrin (ß-CD) with the cross-linking agent ethylenediaminetetraacetic acid (EDTA), is reported here. Thorough structural characterization is achieved by exploiting the complementary selection rules of FTIR-ATR and Raman spectroscopies and by supporting the spectral assignments by DFT calculations of the spectral profiles. The combined analysis of the FTIR-ATR spectra of the polymers hydrated with H2O and D2O allowed us to isolate the HOH bending of water molecules not involved in symmetrical, tetrahedral environments. The analysis of the HOH bending mode was carried out as a function of temperature, showing the existence of a supercooled state of the water molecules. The highest level of cooperativity of the hydrogen bond scheme was reached at a value of the ß-CD/EDTA molar ratio n = 6. Finally, the connectivity pattern of "uncoupled" water molecules bound to the nanosponge backbone was found to be weakened by increasing T. The temperature above which the population of non-tetracoordinated water molecules becomes predominant turned out to be independent of the parameter n.

15.
J Chem Phys ; 142(1): 014901, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25573577

ABSTRACT

The molecular connectivity and the extent of hydrogen-bond patterns of water molecules confined in the polymer hydrogels, namely, cyclodextrin nanosponge hydrogels, are here investigated by using vibrational spectroscopy experiments. The proposed spectroscopic method exploits the combined analysis of the vibrational spectra of polymers hydrated with water and deuterated water, which allows us to separate and selectively investigate the temperature-evolution of the HOH bending mode of engaged water molecules and of the vibrational modes assigned to specific chemical groups of the polymer matrix involved in the physical interactions with water. As main results, we find a strong experimental evidence of a liquid-like behaviour of water molecules confined in the nano-cavities of hydrogel and we observe a characteristic destructuring effect on the hydrogen-bonds network of confined water induced by thermal motion. More interestingly, the extent of this temperature-disruptive effect is found to be selectively triggered by the cross-linking degree of the hydrogel matrix. These results give a more clear picture of the molecular mechanism of water confinement in the pores of nanosponge hydrogel and open the possibility to exploit the spectroscopic method here proposed as investigating tools for water-retaining soft materials.


Subject(s)
Hydrogels/chemistry , Polymers/chemistry , Water/chemistry , Cyclodextrins/chemistry , Hydrogen Bonding , Nanostructures/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Temperature
16.
Phys Chem Chem Phys ; 17(2): 963-71, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25407481

ABSTRACT

The molecular dynamics of water and a polymer matrix is here explored in a paradigmatic model of a polysaccharide hydrogel, by the combined use of UV Raman scattering and infrared measurements. The case example of cyclodextrin nanosponges (CDNS)/hydrogel is chosen since the simultaneous presence in the structure of the polymer matrix of both hydrophilic and hydrophobic sites mimics the complexity of polysaccharide hydrogels. In this way, the contributions provided by the balance between the hydrophilicity/hydrophobicity and the grade of entanglement of the polymer hydrogel to lead to the formation of the gel phase are separately accounted and evaluated. As main results, we found that the hydrophobic CH groups inserted on the aromatic ring of CDNS experience a more pronounced dynamic perturbation with respect to the carbonyl groups due to the collision between the solvent and vibrating atoms of the polymer. The overall results provide a detailed molecular picture of the swelling phenomena occurring when a chemically cross-linked polymer contacts with water or biological fluids and exploits the potentiality of UV Raman spectroscopy to retrieve dynamic information besides their structural counterpart obtained by the classical analysis of the basic features of vibrational spectra.

17.
J Chem Phys ; 140(24): 244505, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24985652

ABSTRACT

A spatial correlation between chemical and topological defects in the tetrahedron network in vitreous silica produced by a fusion process of natural quartz crystals was found by synchrotron-based UV resonance Raman experiments. Furthermore, a quantitative correlation between these defects was obtained by comparing visible Raman and UV absorption spectra. These results indicate that in vitreous silica produced by the fusion process the topological defects disturb the surrounding tetrahedral silica network and induce further disorder regions with sub nanometric sizes.

18.
Sci Rep ; 4: 4952, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24824987

ABSTRACT

The study of highly photo-excited matter at solid state density is an emerging field of research, which is benefitting the development of free-electron-laser (FEL) technology. We report an extreme ultraviolet (XUV) reflectivity experiment from a titanium (Ti) sample irradiated with ultrafast seeded FEL pulses at variable incident photon fluence and frequency. Using a Drude formalism we relate the observed increase in reflectivity as a function of the excitation fluence to an increase in the plasma frequency, which allows us to estimate the free electron density in the excited sample. The extreme simplicity of the experimental setup makes the present approach potentially a valuable complementary tool to determine the average ionization state of the excited sample, information of primary relevance for understanding the physics of matter under extreme conditions.

19.
Nat Commun ; 4: 2476, 2013.
Article in English | MEDLINE | ID: mdl-24048228

ABSTRACT

Exploring the dynamics of matter driven to extreme non-equilibrium states by an intense ultrashort X-ray pulse is becoming reality, thanks to the advent of free-electron laser technology that allows development of different schemes for probing the response at variable time delay with a second pulse. Here we report the generation of two-colour extreme ultraviolet pulses of controlled wavelengths, intensity and timing by seeding of high-gain harmonic generation free-electron laser with multiple independent laser pulses. The potential of this new scheme is demonstrated by the time evolution of a titanium-grating diffraction pattern, tuning the two coherent pulses to the titanium M-resonance and varying their intensities. This reveals that an intense pulse induces abrupt pattern changes on a time scale shorter than hydrodynamic expansion and ablation. This result exemplifies the essential capabilities of the jitter-free multiple-colour free-electron laser pulse sequences to study evolving states of matter with element sensitivity.

20.
Rev Sci Instrum ; 83(10): 103102, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126746

ABSTRACT

We report on a high resolution inelastic UV scattering table-top setup conceived for Brillouin measurements. The system is based on a tandem 1+1 pass scanning Fabry-Perot interferometer of Sandercock type. Special optics were used in order to adapt such an interferometric device, nowadays only used at visible or IR wavelength, to the UV range. The advantages with respect to other UV Brillouin scattering instruments are the larger resolving power and the improved contrast in the low frequency spectral region. To corroborate these features we provide a comparison between data obtained using the described system and those from existing UV Brillouin scattering instruments.

SELECTION OF CITATIONS
SEARCH DETAIL
...