Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 60(24): 10118-10134, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29148755

ABSTRACT

A BioFocus DPI SoftFocus library of ∼35 000 compounds was screened against Mycobacterium tuberculosis (Mtb) in order to identify novel hits with antitubercular activity. The hits were evaluated in biology triage assays to exclude compounds suggested to function via frequently encountered promiscuous mechanisms of action including inhibition of the QcrB subunit of the cytochrome bc1 complex, disruption of cell-wall homeostasis, and DNA damage. Among the hits that passed this screening cascade, a 6-dialkylaminopyrimidine carboxamide series was prioritized for hit to lead optimization. Compounds from this series were active against clinical Mtb strains, while no cross-resistance to conventional antituberculosis drugs was observed. This suggested a novel mechanism of action, which was confirmed by chemoproteomic analysis leading to the identification of BCG_3193 and BCG_3827 as putative targets of the series with unknown function. Initial structure-activity relationship studies have resulted in compounds with moderate to potent antitubercular activity and improved physicochemical properties.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Administration, Oral , Animals , Antitubercular Agents/chemical synthesis , Blood Proteins/metabolism , Drug Stability , High-Throughput Screening Assays , Humans , Male , Mice, Inbred C57BL , Microsomes, Liver/drug effects , Mycobacterium tuberculosis/isolation & purification , Proteomics/methods , Pyrimidines/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
2.
J Med Chem ; 58(23): 9371-81, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26551248

ABSTRACT

High-throughput screening of a library of small polar molecules against Mycobacterium tuberculosis led to the identification of a phthalimide-containing ester hit compound (1), which was optimized for metabolic stability by replacing the ester moiety with a methyl oxadiazole bioisostere. A route utilizing polymer-supported reagents was designed and executed to explore structure-activity relationships with respect to the N-benzyl substituent, leading to compounds with nanomolar activity. The frontrunner compound (5h) from these studies was well tolerated in mice. A M. tuberculosis cytochrome bd oxidase deletion mutant (ΔcydKO) was hyper-susceptible to compounds from this series, and a strain carrying a single point mutation in qcrB, the gene encoding a subunit of the menaquinol cytochrome c oxidoreductase, was resistant to compounds in this series. In combination, these observations indicate that this novel class of antimycobacterial compounds inhibits the cytochrome bc1 complex, a validated drug target in M. tuberculosis.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Electron Transport Complex III/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Pyrroles/chemistry , Pyrroles/pharmacology , Animals , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacokinetics , Electron Transport Complex III/metabolism , Humans , Mice , Microsomes, Liver/metabolism , Molecular Targeted Therapy , Pyridones/chemistry , Pyridones/metabolism , Pyridones/pharmacokinetics , Pyridones/pharmacology , Pyrroles/metabolism , Pyrroles/pharmacokinetics , Rats , Tuberculosis/drug therapy , Tuberculosis/microbiology
3.
Bioorg Med Chem ; 23(22): 7240-50, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26522089

ABSTRACT

Whole-cell high-throughput screening of a diverse SoftFocus library against Mycobacterium tuberculosis (Mtb) generated a novel aminopyrazolo[1,5-a]pyrimidine hit series. The synthesis and structure activity relationship studies identified compounds with potent antimycobacterial activity. The SAR of over 140 compounds shows that the 2-pyridylmethylamine moiety at the C-7 position of the pyrazolopyrimidine scaffold was important for Mtb activity, whereas the C-3 position offered a higher degree of flexibility. The series was also profiled for in vitro cytotoxicity and microsomal metabolic stability as well as physicochemical properties. Consequently liabilities to be addressed in a future lead optimization campaign have been identified.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Pyrazoles/chemistry , Pyrimidines/chemistry , Animals , Antitubercular Agents/chemistry , Antitubercular Agents/metabolism , CHO Cells , Cell Survival/drug effects , Cricetinae , Cricetulus , Drug Design , Half-Life , Mice , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Rats , Solubility , Structure-Activity Relationship
4.
J Med Chem ; 54(13): 4581-9, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21644541

ABSTRACT

A novel class of antimalarial pyrido[1,2-a]benzimidazoles were synthesized and evaluated for antiplasmodial activity and cytotoxicity following hits identified from screening commercially available compound collections. The most active of these, TDR86919 (4c), showed improved in vitro activity vs the drug-resistant K1 strain of Plasmodium falciparum relative to chloroquine (IC(50) = 0.047 µM v 0.17 µM); potency was retained against a range of drug-sensitive and drug-resistant strains, with negligible cytotoxicity against the mammalian (L-6) cell line (selectivity index of >600). 4c and several close analogues (as HCl or mesylate salts) showed significant efficacy in P. berghei infected mice following both intraperitoneal (ip) and oral (po) administration, with >90% inhibition of parasitemia, accompanied by an increase in the mean survival time (MSD). The pyrido[1,2-a]benzimidazoles appeared to be relatively slow acting in vivo compared to chloroquine, and metabolic stability of the alkylamino side chain was identified as a key issue in influencing in vivo activity.


Subject(s)
Antimalarials/chemical synthesis , Benzimidazoles/chemical synthesis , Pyridines/chemical synthesis , Administration, Oral , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Drug Resistance, Multiple , Humans , In Vitro Techniques , Injections, Intraperitoneal , L Cells , Malaria/drug therapy , Male , Mice , Microsomes, Liver/metabolism , Plasmodium berghei , Plasmodium falciparum/drug effects , Pyridines/pharmacokinetics , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...