Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
JHEP Rep ; 5(5): 100691, 2023 May.
Article in English | MEDLINE | ID: mdl-37153687

ABSTRACT

Background & Aims: ß-catenin is a well-known effector of the Wnt pathway, and a key player in cadherin-mediated cell adhesion. Oncogenic mutations of ß-catenin are very frequent in paediatric liver primary tumours. Those mutations are mostly heterozygous, which allows the co-expression of wild-type (WT) and mutated ß-catenins in tumour cells. We investigated the interplay between WT and mutated ß-catenins in liver tumour cells, and searched for new actors of the ß-catenin pathway. Methods: Using an RNAi strategy in ß-catenin-mutated hepatoblastoma (HB) cells, we dissociated the structural and transcriptional activities of ß-catenin, which are carried mainly by WT and mutated proteins, respectively. Their impact was characterised using transcriptomic and functional analyses. We studied mice that develop liver tumours upon activation of ß-catenin in hepatocytes (APCKO and ß-cateninΔexon3 mice). We used transcriptomic data from mouse and human HB specimens, and used immunohistochemistry to analyse samples. Results: We highlighted an antagonistic role of WT and mutated ß-catenins with regard to hepatocyte differentiation, as attested by alterations in the expression of hepatocyte markers and the formation of bile canaliculi. We characterised fascin-1 as a transcriptional target of mutated ß-catenin involved in tumour cell differentiation. Using mouse models, we found that fascin-1 is highly expressed in undifferentiated tumours. Finally, we found that fascin-1 is a specific marker of primitive cells including embryonal and blastemal cells in human HBs. Conclusions: Fascin-1 expression is linked to a loss of differentiation and polarity of hepatocytes. We present fascin-1 as a previously unrecognised factor in the modulation of hepatocyte differentiation associated with ß-catenin pathway alteration in the liver, and as a new potential target in HB. Impact and implications: The FSCN1 gene, encoding fascin-1, was reported to be a metastasis-related gene in various cancers. Herein, we uncover its expression in poor-prognosis hepatoblastomas, a paediatric liver cancer. We show that fascin-1 expression is driven by the mutated beta-catenin in liver tumour cells. We provide new insights on the impact of fascin-1 expression on tumour cell differentiation. We highlight fascin-1 as a marker of immature cells in mouse and human hepatoblastomas.

2.
Cell Adh Migr ; 8(3): 280-92, 2014.
Article in English | MEDLINE | ID: mdl-24840388

ABSTRACT

Invadosomes are actin-based structures involved in extracellular-matrix degradation. Invadosomes, either known as podosomes or invadopodia, are found in an increasing number of cell types. Moreover, their overall organization and molecular composition may vary from one cell type to the other. Some are constitutive such as podosomes in hematopoietic cells whereas others are inducible. However, they share the same feature, their ability to interact and to degrade the extracellular matrix. Based on the literature and our own experiments, the aim of this study was to establish a minimal molecular definition of active invadosomes. We first highlighted that Cdc42 is the key RhoGTPase involved in invadosome formation in all described models. Using different cellular models, such as NIH-3T3, HeLa, and endothelial cells, we demonstrated that overexpression of an active form of Cdc42 is sufficient to form invadosome actin cores. Therefore, active Cdc42 must be considered not only as an inducer of filopodia, but also as an inducer of invadosomes. Depending on the expression level of Tks5, these Cdc42-dependent actin cores were endowed or not with a proteolytic activity. In fact, Tks5 overexpression rescued this activity in Tks5 low expressing cells. We thus described the adaptor protein Tks5 as a major actor of the invadosome degradation function. Surprisingly, we found that Src kinases are not always required for invadosome formation and function. These data suggest that even if Src family members are the principal kinases involved in the majority of invadosomes, it cannot be considered as a common element for all invadosome structures. We thus define a minimal and universal molecular signature of invadosome that includes Cdc42 activity and Tks5 presence in order to drive the actin machinery and the proteolytic activity of these invasive structures.


Subject(s)
Actin Cytoskeleton/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Cell Movement/physiology , Extracellular Matrix/metabolism , Phosphoproteins/metabolism , cdc42 GTP-Binding Protein/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Animals , Humans , Mice , Microscopy, Fluorescence , NIH 3T3 Cells , Phosphate-Binding Proteins , Phosphoproteins/genetics
3.
Exp Hematol Oncol ; 3(1): 30, 2014.
Article in English | MEDLINE | ID: mdl-25601900

ABSTRACT

OBJECTIVES: Tissue factor (TF) exposed on activated monocytes and macrophages is involved in thrombosis through activation of factor X and cytokine release, responsible for inflammation and thrombosis. We investigated the effect of two anti-factor Xa drugs: rivaroxaban, a direct anti-Xa inhibitor, and fondaparinux, an antithrombin dependent anti-Xa inhibitor, on monocyte/macrophage procoagulant activity and cytokine release. METHODS: Rivaroxaban and fondaparinux were tested at pharmacological concentrations on LPS-activated monocytes and on THP-1 cells, a human monocytic cell line, to assess 1) TF expression by flow cytometry 2) prothrombinase activity by its coagulant activity and 3) cytokine release in cell supernatants by antibody based cytokine array and ELISA for IL-8 and TNFα. RESULTS AND CONCLUSION: Rivaroxaban and fondaparinux did not modify TF expression level on activated cells. In contrast procoagulant activity associated to monocytes and macrophages was dose dependently inhibited by rivaroxaban, but not significantly by fondaparinux. These results could explain why patients undergoing major orthopedic surgery with rivaroxaban prophylaxis were able to achieve significant reductions in venous thromboembolism, compared with drugs commonly used, i.e. fondaparinux and low molecular weight heparin. In addition, rivaroxaban and fondaparinux suppressed some chemokine secretion produced by activated macrophages. This may also contribute to their antithrombotic effect in clinic.

4.
BMC Cancer ; 13: 63, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23388133

ABSTRACT

BACKGROUND: Rho GTPases are involved in cellular functions relevant to cancer. The roles of RhoA and Rac1 have already been established. However, the role of Rac3 in cancer aggressiveness is less well understood. METHODS: This work was conducted to analyze the implication of Rac3 in the aggressiveness of two breast cancer cell lines, MDA-MB-231 and MCF-7: both express Rac3, but MDA-MB-231 expresses more activated RhoA. The effect of Rac3 in cancer cells was also compared with its effect on the non-tumorigenic mammary epithelial cells MCF-10A. We analyzed the consequences of Rac3 depletion by anti-Rac3 siRNA. RESULTS: Firstly, we analyzed the effects of Rac3 depletion on the breast cancer cells' aggressiveness. In the invasive MDA-MB-231 cells, Rac3 inhibition caused a marked reduction of both invasion (40%) and cell adhesion to collagen (84%), accompanied by an increase in TNF-induced apoptosis (72%). This indicates that Rac3 is involved in the cancer cells' aggressiveness. Secondly, we investigated the effects of Rac3 inhibition on the expression and activation of related signaling molecules, including NF-κB and ERK. Cytokine secretion profiles were also analyzed. In the non-invasive MCF-7 line; Rac3 did not influence any of the parameters of aggressiveness. CONCLUSIONS: This discrepancy between the effects of Rac3 knockdown in the two cell lines could be explained as follows: in the MDA-MB-231 line, the Rac3-dependent aggressiveness of the cancer cells is due to the Rac3/ERK-2/NF-κB signaling pathway, which is responsible for MMP-9, interleukin-6, -8 and GRO secretion, as well as the resistance to TNF-induced apoptosis, whereas in the MCF-7 line, this pathway is not functional because of the low expression of NF-κB subunits in these cells. Rac3 may be a potent target for inhibiting aggressive breast cancer.


Subject(s)
Breast Neoplasms/enzymology , rac GTP-Binding Proteins/metabolism , Apoptosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Adhesion , Cell Movement , Cell Shape , Cell Survival , Collagen/metabolism , Cytokines/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , MCF-7 Cells , Matrix Metalloproteinase 9/metabolism , NF-kappa B/metabolism , Neoplasm Invasiveness , RNA Interference , Signal Transduction , Time Factors , Transfection , Tumor Necrosis Factor-alpha/metabolism , rac GTP-Binding Proteins/genetics , rhoA GTP-Binding Protein/metabolism
5.
J Hematol Oncol ; 5: 16, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22534171

ABSTRACT

BACKGROUND: Tissue factor (TF), an initiator of blood coagulation, participates in cancer progression and metastasis. We recently found that inhibition of MAPK/ERK upregulated both full length TF (flTF) and soluble isoform TF (asTF) gene expression and cell-associated TF activity in breast cancer MDA-MB-231 cells. We explored the possible mechanisms, especially the possible interaction with EGFR and PI3K/Akt pathways. METHODS: A plasmid containing TF promoter -2174 ~ +128 plus luciferase reporter gene was introduced into MDA-MB-231 cells to evaluate TF promoter activity. In order to study the interaction of these pathways, ERK inhibitor (PD98059), PI3K inhibitors (LY294002, wortmannin), Akt inhibitor (A6730), and EGFR inhibitor (erlotinib) as well as the corresponding siRNAs were used to treat MDA-MB-231 cells, and ovarian cancer OVCAR-3 and SKOV-3 cells. Quantitative PCR and western blot were used to determine TF expression. One stage clotting assays were used to measure pro-coagulation activity of the MDA-MB-231 cells. RESULTS: We show that PI3K inhibitors LY294002, wortmannin and A6730 significantly inhibited TF promoter activity, and reduced TF mRNA and protein levels due to the inhibition of Akt phosphorylation. In contrast, ERK inhibitor PD98059 and ERK siRNA enhanced TF promoter activity by 2.5 fold and induced an increase in TF mRNA and protein levels in a dose dependent manner in these cells. The PI3K/Akt pathway was shown to be involved in PD98059-induced TF expression because the induction was inhibited by PI3K/Akt inhibitors. Most interestingly, the EGFR inhibitor erlotinib and EGFR siRNA also significantly suppressed PD98059- or ERK siRNA-induced TF promoter activity and TF protein expression. Similar results were found with ovarian cancer cells SKOV-3 and OVCAR-3. Furthermore, in MDA-MB-231, mRNA levels of asTF were regulated in a similar way to that of TF in response to the cell treatment. CONCLUSIONS: This study showed a regulatory mechanism in which MAPK/ERK signals inhibit EGFR/PI3K/Akt-mediated TF expression in breast cancer MDA-MB-231 cells. The same regulation was observed in ovarian cancer OVCAR-3 and SKOV-3 cells. Interestingly, we observed that both flTF and asTF could be regulated in a parallel manner in MDA-MB-231. As the PI3K/Akt pathway and EGFR regulate TF expression in cancer cells, targeting these signaling components is expected to potentially inhibit TF expression-associated tumor progression.


Subject(s)
Breast Neoplasms/metabolism , Cell Movement , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Thromboplastin/metabolism , Blood Coagulation/drug effects , Blotting, Western , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Proliferation , Collagen/metabolism , Drug Combinations , Enzyme Inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Laminin/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/genetics , Neoplasm Invasiveness , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Promoter Regions, Genetic/genetics , Proteoglycans/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Thromboplastin/genetics , Transcription, Genetic , Tumor Cells, Cultured
6.
Cancer Lett ; 317(2): 207-17, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22120672

ABSTRACT

Seeking to improve ovarian cancer therapy, we compared biological characteristics of the moderately-aggressive OVCAR-3 cell line with two highly aggressive ovarian cancer cell populations: the SK-OV-3 cell line, and HASCJ primary cells isolated from the ascitic fluid of a patient with FIGO stage IV ovarian cancer. Secretion of angiogenic factors was not discriminative, whereas cell invasion through Matrigel and vasculogenic mimicry were much greater in the more aggressive cells. Among 10 agents tested for their ability to decrease cancer cell aggressivity using these two models, inhibitors of Stat3, IGF-IR and Rho GTPase were found to be the most promising.


Subject(s)
Ovarian Neoplasms/metabolism , Receptor, IGF Type 1/metabolism , STAT3 Transcription Factor/metabolism , rhoA GTP-Binding Protein/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Blotting, Western , Cell Line , Cell Line, Tumor , Drug Screening Assays, Antitumor/methods , Female , Humans , Models, Biological , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Signal Transduction/drug effects , Tumor Cells, Cultured
7.
BMC Cancer ; 10: 375, 2010 Jul 17.
Article in English | MEDLINE | ID: mdl-20637124

ABSTRACT

BACKGROUND: Infiltration by macrophages (Mphi) indicates a poor prognosis in breast cancers, in particular by inducing angiogenesis. Our study aimed 1) to investigate the mechanism by which cooperation between Mphi and aggressive breast cancer cells (MDA-MB-231) induces angiogenesis; 2) to examine the effect of tetrathiomolybdate (TM) on this angiogenic activity. METHODS: Mphi coincubated with MDA-MB-231 were used as a model to mimic the inflammatory microenvironment. Angiogenesis induced by the culture media was tested in the chick chorioallantoic membrane (CAM). Mphi phenotype was evaluated by 1) expression of the M1 marker CD80, and secretion of interleukin 10 (IL-10), an M2 marker; 2) capacity to secrete Tumour Necrosis Factor alpha (TNFalpha) when stimulated by lipopolysaccharide/interferon gamma (LPS/IFNgamma); 3) ability to induce MDA-MB-231 apoptosis. To explore the molecular mechanisms involved, cytokine profiles of conditioned media from MDA-MB-231, Mphi and the coculture were characterised by an antibody cytokine array. All experiments were carried out both in presence and in absence of TM. RESULTS: Incubation of Mphi with MDA-MB-231 induced a pro-angiogenic effect in the CAM. It emerged that the angiogenic activity of the coculture is due to the capacity of Mphi to switch from M1 Mphi towards M2, probably due to an increase in Macrophage Colony Stimulating Factor. This M1-M2 switch was shown by a decreased expression of CD80 upon LPS/IFNgamma stimulation, an increased secretion of IL-10, a decreased secretion of TNFalpha in response to LPS/IFNgamma and an inability to potentiate apoptosis. At the molecular level, the angiogenic activity of the coculture medium can be explained by the secretion of CXC chemokines/ELR+ and CC chemokines. Although TM did not modify either the M2 phenotype in the coculture or the profile of the secreted chemokines, it did decrease the angiogenic activity of the coculture medium, suggesting that TM inhibited angiogenic activity by interfering with the endothelial cell signalling induced by these chemokines. CONCLUSIONS: Cooperation between Mphi and MDA-MB-231 transformed M1 Mphi to an angiogenic, M2 phenotype, attested by secretion of CXC chemokines/ELR+ and CC chemokines. TM inhibited this coculture-induced increase in angiogenic activity, without affecting either Mphi phenotype or cytokine secretion profiles.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Breast Neoplasms/blood supply , Breast Neoplasms/pathology , Macrophages/pathology , Molybdenum/pharmacology , Neovascularization, Pathologic/prevention & control , Animals , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cells, Cultured , Chemokines/metabolism , Chick Embryo , Coculture Techniques , Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Humans , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Recombinant Proteins
8.
Gastroenterol Res Pract ; 2010: 640797, 2010.
Article in English | MEDLINE | ID: mdl-21528105

ABSTRACT

Background and Aims. An arterial blood supply and phenotypic changes of the sinusoids characterise the liver vasculature in human hepatocellular carcinoma (HCC). We investigated the effects of rosuvastatin on liver vessel anomalies, tumour growth and survival in HCC. Methods. We treated transgenic mice developing HCC, characterized by vessel anomalies similar to those of human HCC, with rosuvastatin. Results. In the rosuvastatin group, the survival time was longer (P < .001), and liver weight (P < .01) and nodule surface (P < .01) were reduced. Rosuvastatin decreased the number of smooth muscle actin-positive arteries (P < .05) and prevented the sinusoid anomalies, with decreased laminin expression (P < .001), activated hepatic stellate cells (P < .001), and active Notch4 expression. Furthermore, rosuvastatin inhibited endothelial cell but not tumour hepatocyte functions. Conclusions. Rosuvastatin reduced the vessel anomalies and tumour growth and prolonged survival in HCC. These results represent new mechanisms of the effects of statin on tumour angiogenesis and a potential target therapy in HCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...