Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Thromb Res ; 140 Suppl 1: S169-70, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27161676

ABSTRACT

INTRODUCTION: Cancer patients have a 4- to 7- fold increased risk of venous thromboembolism (VTE) compared with general population. Most tumor cells express tissue factor (TF) and constitutively release small membrane microvesicles called tumor microvesicles (TMVs). Clinical studies have shown that circulating MP-TF activity is associated with VTE in pancreatic cancer but not in other types of cancer. Thrombin is a potent platelet agonist and activates platelets via protease activated receptors (PARs). AIM: To determine the contribution of the TF+ TMV-thrombin-platelet pathway to cancer-associated thrombosis. MATERIALS AND METHODS: A human pancreatic adenocarcinoma cell line expressing high levels of TF (BxPc-3) was selected to study the effect of TF+ TMVs on platelet activation and thrombosis. RESULTS: TF+ TMVs induced platelet activation in vitro in a thrombin-dependent manner. The presence of orthotopically grown BxPc-3 tumors in mice was associated with increased levels of thrombin-antithrombin III complexes (TATc) and larger thrombi in an inferior vena cava stenosis model compared with control mice. Furthermore, injection of BxPc-3 TF+ TMVs into mice triggered platelet activation and enhanced venous thrombosis in a TF-dependent manner. Importantly, BxPc-3 TF+ TMV-enhanced thrombosis was reduced in Par4-deficient mice and wild-type mice treated with the platelet inhibitor clopidogrel, suggesting that platelet activation was required for the enhanced thrombosis. CONCLUSIONS: These studies suggest that platelet inhibitors may reduce thrombosis in cancer patients with elevated levels of TF+ TMVs.

2.
J Thromb Haemost ; 14(1): 153-66, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26516108

ABSTRACT

UNLABELLED: ESSENTIALS: Cancer patients have a high rate of venous thrombosis (VT) but the underlying mechanisms are unknown. Tumor-derived, tissue factor-positive microvesicles in platelet activation in vitro and in vivo were studied. Tumor-derived, tissue factor-positive microvesicles enhanced VT in mice. Platelets may contribute to VT in some cancer patients, and this could be prevented with antiplatelet drugs. BACKGROUND: Cancer patients have an approximately 4-fold increased risk of venous thromboembolism (VTE) compared with the general population, and cancer patients with VTE have reduced survival. Tumor cells constitutively release small membrane vesicles called microvesicles (MVs) that may contribute to thrombosis in cancer patients. Clinical studies have shown that levels of circulating tumor-derived, tissue factor-positive (TF(+) ) MVs in pancreatic cancer patients are associated with VTE. Objectives We tested the hypothesis that TF(+) tumor-derived MVs (TMVs) activate platelets in vitro and in mice. MATERIALS AND METHODS: We selected two human pancreatic adenocarcinoma cell lines expressing high (BxPc-3) and low (L3.6pl) levels of TF as models to study the effect of TF(+) TMVs on platelets and thrombosis. RESULTS AND CONCLUSIONS: We found that both types of TF(+) TMVs activated human platelets and induced aggregation in vitro in a TF and thrombin-dependent manner. Further, injection of BxPc-3 TF(+) TMVs triggered platelet activation in vivo and enhanced thrombosis in two mouse models of venous thrombosis in a TF-dependent manner. Importantly, BxPc-3 TF(+) TMV-enhanced thrombosis was reduced in Par4-deficient mice and in wild-type mice treated with clopidogrel, suggesting that platelet activation was required for enhanced thrombosis. These studies suggest that TF(+) TMV-induced platelet activation contributes to thrombosis in cancer patients.


Subject(s)
Cell-Derived Microparticles , Thromboplastin/physiology , Thrombosis/drug therapy , Adenocarcinoma/physiopathology , Animals , Blood Platelets/cytology , Cell Line, Tumor , Clopidogrel , Female , Flow Cytometry , Humans , Mice , Mice, Inbred C57BL , Neoplasms/physiopathology , Pancreatic Neoplasms/physiopathology , Platelet Activation , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology , Pulmonary Embolism/drug therapy , Thrombin/metabolism , Ticlopidine/analogs & derivatives , Ticlopidine/pharmacology
3.
J Thromb Haemost ; 13(3): 417-25, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25442192

ABSTRACT

INTRODUCTION: Hemostasis is a rapid response by the body to stop bleeding at sites of vessel injury. Both platelets and fibrin are important for the formation of a hemostatic plug. Mice have been used to uncover the molecular mechanisms that regulate the activation of platelets and coagulation under physiologic conditions. However, measurements of hemostasis in mice are quite variable, and current methods do not quantify platelet adhesion or fibrin formation at the site of injury. METHODS: We describe a novel hemostasis model that uses intravital fluorescence microscopy to quantify platelet adhesion, fibrin formation and time to hemostatic plug formation in real time. Repeated vessel injuries of ~ 50-100 µm in diameter were induced with laser ablation technology in the saphenous vein of mice. RESULTS: Hemostasis in this model was strongly impaired in mice deficient in glycoprotein Ibα or talin-1, which are important regulators of platelet adhesiveness. In contrast, the time to hemostatic plug formation was only minimally affected in mice deficient in the extrinsic tissue factor (TF(low)) or the intrinsic factor IX coagulation pathways, even though platelet adhesion was significantly reduced. A partial reduction in platelet adhesiveness obtained with clopidogrel led to instability within the hemostatic plug, especially when combined with impaired coagulation in TF(low) mice. CONCLUSIONS: In summary, we present a novel, highly sensitive method to quantify hemostatic plug formation in mice. On the basis of its sensitivity to platelet adhesion defects and its real-time imaging capability, we propose this model as an ideal tool with which to study the efficacy and safety of antiplatelet agents.


Subject(s)
Bleeding Time , Blood Platelets/metabolism , Hemostasis , Saphenous Vein/metabolism , Vascular System Injuries/blood , Animals , Blood Coagulation , Blood Platelets/drug effects , Clopidogrel , Disease Models, Animal , Factor IX/genetics , Factor IX/metabolism , Fibrin/metabolism , Hemostasis/genetics , Intravital Microscopy , Laser Therapy , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Microscopy, Video , Platelet Adhesiveness , Platelet Aggregation Inhibitors/pharmacology , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/metabolism , Saphenous Vein/surgery , Talin/deficiency , Talin/genetics , Thromboplastin/deficiency , Thromboplastin/genetics , Ticlopidine/analogs & derivatives , Ticlopidine/pharmacology , Time Factors , Vascular System Injuries/etiology , Vascular System Injuries/genetics
4.
J Thromb Haemost ; 12(5): 680-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24916154

ABSTRACT

BACKGROUND: Elevated plasma fibrinogen is associated with arterial thrombosis in humans and promotes thrombosis in mice by increasing fibrin formation and thrombus fibrin content. Fibrinogen is composed of six polypeptide chains: (Aα, Bß, and γ)2. Alternative splicing of the γ chain leads to a dominant form (γA/γA) and a minor species (γA/γ'). Epidemiological studies have detected elevated γA/γ' fibrinogen in patients with arterial thrombosis, suggesting that this isoform promotes thrombosis. However, in vitro data show that γA/γ' is anticoagulant due to its ability to sequester thrombin and suggest its expression is upregulated in response to inflammatory processes. OBJECTIVE: To determine whether γA/γ' fibrinogen is prothrombotic in vivo. METHODS: We separated γA/γA and γA/γ' fibrinogen from human plasma-purified fibrinogen and determined the effects on in vitro plasma clot formation and on in vivo thrombus formation and circulating thrombin-antithrombin complexes in mice. RESULTS AND CONCLUSIONS: Both γA/γA and γA/γ' fibrinogen were cleaved by murine and human thrombin and were incorporated into murine and human clots. When γA/γA or γA/γ' was spiked into plasma, γA/γA increased the fibrin formation rate to a greater extent than γA/γ'. In mice, compared to controls, γA/γA infusion shortened the time to carotid artery occlusion, whereas γA/γ' infusion did not. Additionally, γA/γ' infusion led to lower levels of plasma thrombin-antithrombin complexes following arterial injury, whereas γA/γA infusion did not. These data suggest that γA/γ' binds thrombin in vivo and decreases prothrombotic activity. Together, these findings indicate that elevated levels of γA/γA fibrinogen promote arterial thrombosis in vivo, whereas γA/γ' does not.


Subject(s)
Arteries/pathology , Blood Coagulation , Fibrinogen/chemistry , Fibrinogens, Abnormal/chemistry , Thrombosis/metabolism , Animals , Antithrombins/chemistry , Blood Coagulation Tests , Female , Fibrinogen/genetics , Fibrinogens, Abnormal/genetics , Humans , Inflammation , Male , Mice , Middle Aged , Protein Isoforms/chemistry , Protein Isoforms/genetics , Thrombin/chemistry
6.
J Thromb Haemost ; 8(10): 2283-93, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20670370

ABSTRACT

BACKGROUND: Myosin IIA is an essential platelet contractile protein that is regulated by phosphorylation of its regulatory light chain (MLC) on residues (Thr)18 and (Ser)19 via the myosin light chain kinase (MLCK). OBJECTIVE: The present study was carried out to elucidate the mechanisms regulating MLC (Ser)19 and (Thr)18 phosphorylation and the functional consequence of each phosphorylation event in platelets. RESULTS: Induction of 2MeSADP-induced shape change occurs within 5s along with robust phosphorylation of MLC (Ser)19 with minimal phosphorylation of MLC (Thr)18. Selective activation of G(12/13) produces both slow shape change and comparably slow MLC (Thr)18 and (Ser)19 phosphorylation. Stimulation with agonists that trigger ATP secretion caused rapid MLC (Ser)19 phosphorylation while MLC (Thr)18 phosphorylation was coincident with secretion. Platelets treated with p160(ROCK) inhibitor Y-27632 exhibited a partial inhibition in secretion and had a substantial inhibition in MLC (Thr)18 phosphorylation without effecting MLC (Ser)19 phosphorylation. These data suggest that phosphorylation of MLC (Ser)19 is downstream of Gq/Ca(2+) -dependent mechanisms and sufficient for shape change, whereas MLC (Thr)18 phosphorylation is substantially downstream of G(12/13) -regulated Rho kinase pathways and necessary, probably in concert with MLC (Ser)19 phosphorylation, for full contractile activity leading to dense granule secretion. Overall, we suggest that the amplitude of the platelet contractile response is differentially regulated by a least two different signaling pathways, which lead to different phosphorylation patterns of the myosin light chain, and this mechanism results in a graded response rather than a simple on/off switch.


Subject(s)
Blood Platelets/metabolism , Myosin Light Chains/chemistry , Myosin Light Chains/genetics , Serine/chemistry , Threonine/chemistry , Adenosine Diphosphate/chemistry , Calcium/chemistry , Calcium/metabolism , Cell Shape , Humans , Kinetics , Phosphorylation , Platelet Aggregation , Signal Transduction , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...