Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(2): 028101, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36706389

ABSTRACT

In this Letter, we study the interaction between a self-sustaining exothermic reaction front propagating in a direction perpendicular to that of gravity and the buoyancy-driven convective flow during frontal polymerization (FP) of a low-viscosity monomer resin. As the polymerization front transforms the liquid monomer into the solid polymer, the large thermal gradients associated with the propagating front sustain a natural convection of the fluid ahead of the front. The fluid convection in turn affects the reaction-diffusion (RD) dynamics and the shape of the front. Detailed multiphysics numerical analyses and particle image velocimetry experiments reveal this coupling between natural convection and frontal polymerization. The frontal Rayleigh (Ra) number affects the magnitude of the velocity field and the inclination of the front. A higher Ra number drives instability during FP, leading to the observation of thermal-chemical patterns with tunable wavelengths and magnitudes.

2.
J Phys Chem B ; 124(29): 6404-6411, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32551667

ABSTRACT

Considered as a faster and energy-efficient alternative to conventional manufacturing techniques for thermosetting polymers and composites, frontal polymerization (FP) is built on a thermal equilibrium between the heat generated by the exothermic reaction of the resin system and the heat consumed by the advancing front. However, a heat loss to the surrounding may disrupt this thermal equilibrium and slow down and possibly quench the front. This paper investigates the impact of two types of heat loss to the surrounding on the key characteristics (propagation speed and maximum temperature) of the polymerization front: convective heat loss along the boundary of the reaction channel and contact heat loss at channel-tool plate interfaces. The analysis is performed numerically using a nonlinear, adaptive fully coupled finite element solver.

3.
J Chem Phys ; 140(7): 074905, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24559368

ABSTRACT

An approximate solution for n-point correlation functions is developed in this study. In the approximate solution, weight functions are used to connect subsets of (n-1)-point correlation functions to estimate the full set of n-point correlation functions. In previous related studies, simple weight functions were introduced for the approximation of three and four-point correlation functions. In this work, the general framework of the weight functions is extended and derived to achieve optimum accuracy for approximate n-point correlation functions. Such approximation can be utilized to construct global n-point correlation functions for a system when there exist limited information about these functions in a subset of space. To verify its accuracy, the new formulation is used to approximate numerically three-point correlation functions from the set of two-point functions directly evaluated from a virtually generated isotropic heterogeneous microstructure representing a particulate composite system. Similarly, three-point functions are approximated for an anisotropic glass fiber/epoxy composite system and compared to their corresponding reference values calculated from an experimental dataset acquired by computational tomography. Results from both virtual and experimental studies confirm the accuracy of the new approximation. The new formulation can be utilized to attain a more accurate approximation to global n-point correlation functions for heterogeneous material systems with a hierarchy of length scales.

4.
Nature ; 409(6822): 794-7, 2001 Feb 15.
Article in English | MEDLINE | ID: mdl-11236987

ABSTRACT

Structural polymers are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. Cracking leads to mechanical degradation of fibre-reinforced polymer composites; in microelectronic polymeric components it can also lead to electrical failure. Microcracking induced by thermal and mechanical fatigue is also a long-standing problem in polymer adhesives. Regardless of the application, once cracks have formed within polymeric materials, the integrity of the structure is significantly compromised. Experiments exploring the concept of self-repair have been previously reported, but the only successful crack-healing methods that have been reported so far require some form of manual intervention. Here we report a structural polymeric material with the ability to autonomically heal cracks. The material incorporates a microencapsulated healing agent that is released upon crack intrusion. Polymerization of the healing agent is then triggered by contact with an embedded catalyst, bonding the crack faces. Our fracture experiments yield as much as 75% recovery in toughness, and we expect that our approach will be applicable to other brittle materials systems (including ceramics and glasses).

SELECTION OF CITATIONS
SEARCH DETAIL
...