Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Am J Hum Genet ; 108(5): 857-873, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33961779

ABSTRACT

The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.


Subject(s)
Brain Diseases/genetics , Epilepsy/genetics , Fused Kidney/genetics , Intellectual Disability/genetics , Mutation, Missense , Nuclear Proteins/genetics , Osteochondrodysplasias/genetics , Adolescent , Amino Acid Sequence , Animals , Brain Diseases/etiology , Child , Child, Preschool , Epilepsy/complications , Evolution, Molecular , Female , Gene Frequency , Humans , Infant , Male , Mice , Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/deficiency , Phenotype , Protein Stability , Syndrome , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/genetics , Young Adult , Zebrafish/genetics
3.
JAMA Ophthalmol ; 139(3): 339-343, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33507209

ABSTRACT

Importance: Homozygous variants in the neuronal ceroid lipofuscinosis type 5 (CLN5) gene are associated with neuronal ceroid lipofuscinosis, a progressive neurologic disorder that leads to ataxia, seizures, and early death. The association between a homozygous variant in this gene and a macular dystrophy is described here. Objective: To describe an autosomal recessive macular dystrophy associated with a recurrent variant in CLN5. Design, Setting, and Participants: This cohort study took place at a national referral center and had a follow-up duration ranging between 1 and 5 years. All patients who were identified to carry a specific homozygous missense variant in CLN5, among more than 2000 patients who were diagnosed with or suspected to have retinal dystrophies, who did not carry this variant, were included. Data were collected between June 2014 and September 2020. Exposures: All patients who were sampled for DNA analysis due to molecularly unconfirmed retinal dystrophy and who were subsequently identified to carry the homozygous missense variant c.415T>C (p.Phe139Leu) in CLN5 were included, while patients who did not carry the variant were excluded. Main Outcomes and Measures: Retinal phenotype associated with this specific homozygous missense variant in CLN5. Results: Seven affected patients (mean [SD] age, 43 [18] years; age range, 33-52 years; 5 male) carried the homozygous missense in CLN5. All patients were diagnosed as having a macular dystrophy. Four patients had mild electroretinographic alterations. All patients had hypoautofluorescent maculas with retinal thinning (central subfield thickness, 80 µm). Visual acuity ranged between 2/200 and 20/100. Neurologic symptoms were mild (dizziness) in 5 patients and absent in 2 patients. Neuroimaging demonstrated cerebellar atrophy and white matter lesions, respectively, in 2 patients. Conclusions and Relevance: These results suggest that CLN5, similar to CLN7, may be associated with isolated macular dystrophy as well as neuronal ceroid lipofuscinosis. The variant c.415T>C p.Phe139Leu does not seem to be associated with any prominent neurologic disease at least until the fourth to sixth decades of life. These findings may imply a specific role of CLN5 in macular neurons. Additional study is suggested, such as molecular screening for this variant in cohorts of patients with undiagnosed macular dystrophies and biological studies of its molecular effects.


Subject(s)
DNA/genetics , Lysosomal Membrane Proteins/genetics , Macular Degeneration/genetics , Mutation, Missense , Adult , DNA/metabolism , DNA Mutational Analysis , Electroretinography , Female , Humans , Lysosomal Membrane Proteins/metabolism , Macular Degeneration/diagnosis , Macular Degeneration/metabolism , Male , Middle Aged , Neuronal Ceroid-Lipofuscinoses , Phenotype , Recurrence
4.
Am J Hum Genet ; 107(1): 164-172, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32553196

ABSTRACT

CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.


Subject(s)
Developmental Disabilities/genetics , Gene Expression/genetics , Neurodevelopmental Disorders/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , RNA/genetics , Receptors, CCR4/genetics , Transcription Factors/genetics , Alleles , Female , Genetic Variation/genetics , Haploinsufficiency/genetics , Heterozygote , Humans , Male , Nervous System Malformations/genetics , Phenotype , Protein Stability
5.
Sci Rep ; 9(1): 13383, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31527654

ABSTRACT

Fin development and regeneration are complex biological processes that are highly relevant in teleost fish. They share genetic factors, signaling pathways and cellular properties to coordinate formation of regularly shaped extremities. Especially correct tissue structure defined by extracellular matrix (ECM) formation is essential. Gene expression and protein localization studies demonstrated expression of fndc3a (fibronectin domain containing protein 3a) in both developing and regenerating caudal fins of zebrafish (Danio rerio). We established a hypomorphic fndc3a mutant line (fndc3awue1/wue1) via CRISPR/Cas9, exhibiting phenotypic malformations and changed gene expression patterns during early stages of median fin fold development. These developmental effects are mostly temporary, but result in a fraction of adults with permanent tail fin deformations. In addition, caudal fin regeneration in adult fndc3awue1/wue1 mutants is hampered by interference with actinotrichia formation and epidermal cell organization. Investigation of the ECM implies that loss of epidermal tissue structure is a common cause for both of the observed defects. Our results thereby provide a molecular link between these developmental processes and foreshadow Fndc3a as a novel temporal regulator of epidermal cell properties during extremity development and regeneration in zebrafish.


Subject(s)
Animal Fins/pathology , Extracellular Matrix/pathology , Gene Expression Regulation, Developmental , Regeneration , Wound Healing , Zebrafish Proteins/deficiency , Zebrafish/metabolism , Animal Fins/metabolism , Animals , Extracellular Matrix/metabolism , Protein Domains
6.
Am J Hum Genet ; 103(1): 125-130, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29909962

ABSTRACT

Mendelian disorders of cholesterol biosynthesis typically result in multi-system clinical phenotypes, underlining the importance of cholesterol in embryogenesis and development. FDFT1 encodes for an evolutionarily conserved enzyme, squalene synthase (SS, farnesyl-pyrophosphate farnesyl-transferase 1), which catalyzes the first committed step in cholesterol biosynthesis. We report three individuals with profound developmental delay, brain abnormalities, 2-3 syndactyly of the toes, and facial dysmorphisms, resembling Smith-Lemli-Opitz syndrome, the most common cholesterol biogenesis defect. The metabolite profile in plasma and urine suggested that their defect was at the level of squalene synthase. Whole-exome sequencing was used to identify recessive disease-causing variants in FDFT1. Functional characterization of one variant demonstrated a partial splicing defect and altered promoter and/or enhancer activity, reflecting essential mechanisms for regulating cholesterol biosynthesis/uptake in steady state.


Subject(s)
Cholesterol/genetics , Farnesyl-Diphosphate Farnesyltransferase/genetics , Musculoskeletal Abnormalities/genetics , Child , Child, Preschool , Enhancer Elements, Genetic/genetics , Female , Humans , Infant , Male , Promoter Regions, Genetic/genetics , RNA Splicing/genetics , Smith-Lemli-Opitz Syndrome/genetics , Exome Sequencing/methods
7.
Genet Med ; 20(6): 599-607, 2018 06.
Article in English | MEDLINE | ID: mdl-29236091

ABSTRACT

PurposeCopy-number variants (CNVs) are generally interpreted by linking the effects of gene dosage with phenotypes. The clinical interpretation of noncoding CNVs remains challenging. We investigated the percentage of disease-associated CNVs in patients with congenital limb malformations that affect noncoding cis-regulatory sequences versus genes sensitive to gene dosage effects.MethodsWe applied high-resolution copy-number analysis to 340 unrelated individuals with isolated limb malformation. To investigate novel candidate CNVs, we re-engineered human CNVs in mice using clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing.ResultsOf the individuals studied, 10% harbored CNVs segregating with the phenotype in the affected families. We identified 31 CNVs previously associated with congenital limb malformations and four novel candidate CNVs. Most of the disease-associated CNVs (57%) affected the noncoding cis-regulatory genome, while only 43% included a known disease gene and were likely to result from gene dosage effects. In transgenic mice harboring four novel candidate CNVs, we observed altered gene expression in all cases, indicating that the CNVs had a regulatory effect either by changing the enhancer dosage or altering the topological associating domain architecture of the genome.ConclusionOur findings suggest that CNVs affecting noncoding regulatory elements are a major cause of congenital limb malformations.


Subject(s)
DNA, Intergenic/genetics , Limb Deformities, Congenital/genetics , Animals , DNA Copy Number Variations/genetics , Female , Gene Dosage/genetics , Genome, Human , Genome-Wide Association Study , Humans , Male , Mice , Mice, Transgenic , Pedigree , Phenotype
8.
Eur J Hum Genet ; 25(6): 771-774, 2017 06.
Article in English | MEDLINE | ID: mdl-28378819

ABSTRACT

Glucose transporter type 1 deficiency syndrome (GLUT1DS) is a neurometabolic disorder with a complex phenotypic spectrum but simple biomarkers in cerebrospinal fluid. The disorder is caused by impaired glucose transport into the brain resulting from variants in SCL2A1. In 10% of GLUT1DS patients, a genetic diagnosis can not be made. Using whole-genome sequencing, we identified a de novo 5'-UTR variant in SLC2A1, generating a novel translation initiation codon, severely compromising SLC2A1 function. This finding expands our understanding of the disease mechanisms underlying GLUT1DS and encourages further in-depth analysis of SLC2A1 non-coding regions in patients without variants in the coding region.


Subject(s)
Carbohydrate Metabolism, Inborn Errors/genetics , Codon, Initiator/genetics , Glucose Transporter Type 1/genetics , Monosaccharide Transport Proteins/deficiency , 5' Untranslated Regions , Adolescent , Carbohydrate Metabolism, Inborn Errors/diagnosis , Cells, Cultured , Female , Glucose Transporter Type 1/metabolism , Humans , Monosaccharide Transport Proteins/genetics , Mutation , Peptide Chain Initiation, Translational
9.
Am J Hum Genet ; 100(4): 650-658, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28343630

ABSTRACT

Intellectual disability (ID) is a highly heterogeneous disorder involving at least 600 genes, yet a genetic diagnosis remains elusive in ∼35%-40% of individuals with moderate to severe ID. Recent meta-analyses statistically analyzing de novo mutations in >7,000 individuals with neurodevelopmental disorders highlighted mutations in PPM1D as a possible cause of ID. PPM1D is a type 2C phosphatase that functions as a negative regulator of cellular stress-response pathways by mediating a feedback loop of p38-p53 signaling, thereby contributing to growth inhibition and suppression of stress-induced apoptosis. We identified 14 individuals with mild to severe ID and/or developmental delay and de novo truncating PPM1D mutations. Additionally, deep phenotyping revealed overlapping behavioral problems (ASD, ADHD, and anxiety disorders), hypotonia, broad-based gait, facial dysmorphisms, and periods of fever and vomiting. PPM1D is expressed during fetal brain development and in the adult brain. All mutations were located in the last or penultimate exon, suggesting escape from nonsense-mediated mRNA decay. Both PPM1D expression analysis and cDNA sequencing in EBV LCLs of individuals support the presence of a stable truncated transcript, consistent with this hypothesis. Exposure of cells derived from individuals with PPM1D truncating mutations to ionizing radiation resulted in normal p53 activation, suggesting that p53 signaling is unaffected. However, a cell-growth disadvantage was observed, suggesting a possible effect on the stress-response pathway. Thus, we show that de novo truncating PPM1D mutations in the last and penultimate exons cause syndromic ID, which provides additional insight into the role of cell-cycle checkpoint genes in neurodevelopmental disorders.


Subject(s)
Exons , Intellectual Disability/genetics , Mutation , Protein Phosphatase 2C/genetics , Adolescent , Cell Cycle , Child , Child, Preschool , Humans , Intellectual Disability/pathology , Young Adult
10.
Cell Rep ; 10(5): 833-839, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25660031

ABSTRACT

Structural variations (SVs) contribute to the variability of our genome and are often associated with disease. Their study in model systems was hampered until now by labor-intensive genetic targeting procedures and multiple mouse crossing steps. Here we present the use of CRISPR/Cas for the fast (10 weeks) and efficient generation of SVs in mice. We specifically produced deletions, inversions, and also duplications at six different genomic loci ranging from 1.1 kb to 1.6 Mb with efficiencies up to 42%. After PCR-based selection, clones were successfully used to create mice via aggregation. To test the practicability of the method, we reproduced a human 500 kb disease-associated deletion and were able to recapitulate the human phenotype in mice. Furthermore, we evaluated the regulatory potential of a large genomic interval by deleting a 1.5 Mb fragment. The method presented permits rapid in vivo modeling of genomic rearrangements.

SELECTION OF CITATIONS
SEARCH DETAIL
...