Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 57(8): 1260-1288, 2023 04.
Article in English | MEDLINE | ID: mdl-36843389

ABSTRACT

In recent years, electrocorticography (ECoG) has arisen as a neural signal recording tool in the development of clinically viable neural interfaces. ECoG electrodes are generally placed below the dura mater (subdural) but can also be placed on top of the dura (epidural). In deciding which of these modalities best suits long-term implants, complications and signal quality are important considerations. Conceptually, epidural placement may present a lower risk of complications as the dura is left intact but also a lower signal quality due to the dura acting as a signal attenuator. The extent to which complications and signal quality are affected by the dura, however, has been a matter of debate. To improve our understanding of the effects of the dura on complications and signal quality, we conducted a literature review. We inventorized the effect of the dura on signal quality, decodability and longevity of acute and chronic ECoG recordings in humans and non-human primates. Also, we compared the incidence and nature of serious complications in studies that employed epidural and subdural ECoG. Overall, we found that, even though epidural recordings exhibit attenuated signal amplitude over subdural recordings, particularly for high-density grids, the decodability of epidural recorded signals does not seem to be markedly affected. Additionally, we found that the nature of serious complications was comparable between epidural and subdural recordings. These results indicate that both epidural and subdural ECoG may be suited for long-term neural signal recordings, at least for current generations of clinical and high-density ECoG grids.


Subject(s)
Electrocorticography , Subdural Space , Animals , Electrocorticography/methods , Dura Mater , Electrodes, Implanted
2.
Neurorehabil Neural Repair ; 36(10-11): 666-677, 2022 11.
Article in English | MEDLINE | ID: mdl-36124975

ABSTRACT

Implantable brain-computer interfaces (BCIs) promise to be a viable means to restore communication in individuals with locked-in syndrome (LIS). In 2016, we presented the world-first fully implantable BCI system that uses subdural electrocorticography electrodes to record brain signals and a subcutaneous amplifier to transmit the signals to the outside world, and that enabled an individual with LIS to communicate via a tablet computer by selecting icons in spelling software. For future clinical implementation of implantable communication-BCIs, however, much work is still needed, for example, to validate these systems in daily life settings with more participants, and to improve the speed of communication. We believe the design and execution of future studies on these and other topics may benefit from the experience we have gained. Therefore, based on relevant literature and our own experiences, we here provide an overview of procedures, as well as recommendations, for recruitment, screening, inclusion, imaging, hospital admission, implantation, training, and support of participants with LIS, for studies on daily life implementation of implantable communication-BCIs. With this article, we not only aim to inform the BCI community about important topics of concern, but also hope to contribute to improved methodological standardization of implantable BCI research.


Subject(s)
Brain-Computer Interfaces , Locked-In Syndrome , Humans , Communication , Brain , Electroencephalography
3.
J Neural Eng ; 16(5): 056009, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31296796

ABSTRACT

OBJECTIVE: Brain-computer interfaces (BCIs) are being developed to restore reach and grasping movements of paralyzed individuals. Recent studies have shown that the kinetics of grasping movement, such as grasp force, can be successfully decoded from electrocorticography (ECoG) signals, and that the high-frequency band (HFB) power changes provide discriminative information that contribute to an accurate decoding of grasp force profiles. However, as the models used in these studies contained simultaneous information from multiple spectral features over multiple areas in the brain, it remains unclear what parameters of movement and force are encoded by the HFB signals and how these are represented temporally and spatially in the SMC. APPROACH: To investigate this, and to gain insight in the temporal dynamics of the HFB during grasping, we continuously modelled the ECoG HFB response recorded from nine individuals with epilepsy temporarily implanted with ECoG grids, who performed three different grasp force tasks. MAIN RESULTS: We show that a model based on the force onset and offset consistently provides a better fit to the HFB power responses when compared with a model based on the force magnitude, irrespective of electrode location. SIGNIFICANCE: Our results suggest that HFB power, although potentially useful for continuous decoding, is more closely related to the changes in movement. This finding may potentially contribute to the more natural decoding of grasping movement in neural prosthetics.


Subject(s)
Electrocorticography/methods , Epilepsy/physiopathology , Hand Strength/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , Adolescent , Adult , Child , Electrocorticography/instrumentation , Electrodes, Implanted , Epilepsy/diagnosis , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...