Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Biotechnol ; 31(13): 1753-1760, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36312992

ABSTRACT

Hovenia dulcis, one of the traditional medicinal plants, is currently being used as a functional ingredient for the development of health functional foods that protects the liver from alcohol damage in Korea. A variety of pharmacological effects of Hovenia dulcis have been reported so far, but studies on immune-enhancing activity are insufficient. Thus, in this study, we report that Hovenia dulcis branches (HDB) induce the activation of macrophages. HDB increased the production of immunostimulatory factors and phagocytosis in RAW264.7 cells. TLR4 inhibition blocked HDB-mediated production of immunostimulatory factors. In addition, the JNK inhibition reduced the HDB-mediated production of immunostimulatory factors, and the HDB-mediated JNK activation was blocked by the TLR4 inhibition. HDB increased the level of LC3-II and p62/SQSTM1. TLR4 inhibition blocked HDB-mediated increase in the level of LC3-II and p62/SQSTM1. These findings indicate that HDB may induce TLR4/JNK-dependent macrophage activation and TLR4-dependent macrophage autophagy.

2.
Food Sci Nutr ; 9(11): 5939-5945, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34760227

ABSTRACT

It has been reported that H. mollendorffii roots (HMR) have various pharmacological activities such as anti-inflammatory activity and immunostimulatory activity. However, the anti-obesity activity of HMR has not been studied. Thus, we evaluated in vitro anti-obesity of HMR in mouse preadipocytes, 3T3-L1 cells. HMR reduced the lipid accumulation and triglyceride (TG) contents in 3T3-L1 cells. HMR inhibited the protein expressions such as CCAAT/enhancer-binding protein alpha (CEBPα), peroxisome proliferator-activated receptor gamma (PPARγ), perilipin-1, adiponectin, fatty acid-binding protein 4 (FABP4), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) related to the lipid accumulation of the mature adipocytes. In addition, HMR induced the proteasomal degradation of CEBPα related to the differentiation of the preadipocytes into the mature adipocytes by activating c-Jun N-terminal kinases (JNK) and glycogen synthase kinase 3 beta (GSK3ß). Based on the results of this study, HMR inhibited the differentiation of preadipocytes into mature adipocytes through the CEBPα degradation via JNK and GSK3ß activation and subsequently blocked lipid accumulation of mature adipocytes through inhibiting lipid accumulation-related proteins such as CEBPα, PPARγ, perilipin-1, adiponectin, FABP4, FAS, and ACC.

3.
Mol Med Rep ; 22(6): 5219-5230, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33174016

ABSTRACT

Honeyberry (Lonicera caerulea) has long been used as a traditional medicine in China, Japan and northern Russia. Functional studies of honeyberry have mainly focused on the fruits, which have been reported to exert various pharmacological activities, including anti­inflammatory activity, with limited or no studies on the other parts of the plant, such as the leaves and branches. In the present study, the anti­inflammatory effects of extracts of the leaves (HBL), branches (HBB) and fruit (HBF) of honeyberry plant were evaluated in lipopolysaccharide (LPS)­stimulated RAW264.7 cells. HBL and HBB significantly inhibited the production of pro-inflammatory mediators in LPS­stimulated RAW264.7 cells, and the inhibitory effects of HBL and HBB were stronger than those of HBF. HBL and HBB blocked the nuclear accumulation of p65 independently of IκB­α. HBL did not inhibit the phosphorylation of ERK1/2 or p38; however, HBB effectively inhibited the phosphorylation of p38 but not ERK1/2. HBL and HBB increased the expression of heme oxygenase­1 (HO­1) protein by inducing the nuclear accumulation of nuclear factor erythroid 2­related factor 2 (Nrf2) through the activation of the reactive oxygen species (ROS)/p38 pathway; the reduction in inducible nitric oxide synthase (iNOS) and interleukin­1ß (IL­1ß) expression by HBL and HBB was inhibited by HO­1 knockdown. In addition, HBL and HBB increased the expression of activating transcription factor­3 (ATF3), and the reduction in iNOS and IL­1ß expression by HBL and HBB was inhibited by ATF3 knockdown. Collectively, HBL and HBB inhibited LPS­induced nuclear factor­κB activation by blocking the nuclear accumulation of p65, increasing HO­1 expression through activation of the ROS/p38/Nrf2 pathway, and increasing ATF3 expression. Furthermore, HBB inhibited LPS­induced p38 phosphorylation. These findings suggest that HBL and HBB may have great potential as natural products for the development of anti­inflammatory drugs.


Subject(s)
Lonicera/metabolism , Plant Extracts/pharmacology , Activating Transcription Factor 3/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , China , Fruit/metabolism , Heme Oxygenase-1/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/adverse effects , Lipopolysaccharides/pharmacology , Medicine, Chinese Traditional , Mice , NF-E2-Related Factor 2/metabolism , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Plant Leaves/metabolism , RAW 264.7 Cells/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...