Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Microsc ; 218(Pt 1): 79-83, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15817066

ABSTRACT

Cryo field emission scanning electron microscopy (cryo-FE-SEM) is a versatile technique that allows the investigation of the three-dimensional organization of cells at the ultrastructural level over a wide range of magnifications. Unfortunately, cryopreparation of the specimens for this technique remains cumbersome, in particular because ice crystal formation must be prevented during freezing. Here we report that a light prefixation with glutaraldehyde and incubation in glycerol as cryoprotectant or a high-pressure freezing approach are both excellent procedures for cryopreparation of animal cells to be used in combination with cryo-FE-SEM. Using the proopiomelanocortin-producing intermediate pituitary melanotrope cells of Xenopus laevis as a physiologically inducible neuroendocrine system, we compared the ultrastructural characteristics of inactive and hyperactive neuroendocrine cells. The overall quality of the ultrastructural images was comparable for the two cryopreparation procedures, although some fine structures were better conserved using high-pressure freezing. Melanotrope cells in a secretory inactive state contained numerous storage granules and a poorly developed endoplasmic reticulum (ER), while large amounts of rough ER were present in hyperactive cells. Thus, the cryo-FE-SEM approach described here allows a fast ultrastructural study on the secretory activity of neuroendocrine cells.


Subject(s)
Cryoelectron Microscopy/methods , Microscopy, Electron, Scanning/methods , Neurosecretory Systems/physiology , Neurosecretory Systems/ultrastructure , Animals , Freeze Fracturing , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...