Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7774, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012131

ABSTRACT

Cryo-electron microscopy (cryo-EM) enables the determination of membrane protein structures in native-like environments. Characterising how membrane proteins interact with the surrounding membrane lipid environment is assisted by resolution of lipid-like densities visible in cryo-EM maps. Nevertheless, establishing the molecular identity of putative lipid and/or detergent densities remains challenging. Here we present LipIDens, a pipeline for molecular dynamics (MD) simulation-assisted interpretation of lipid and lipid-like densities in cryo-EM structures. The pipeline integrates the implementation and analysis of multi-scale MD simulations for identification, ranking and refinement of lipid binding poses which superpose onto cryo-EM map densities. Thus, LipIDens enables direct integration of experimental and computational structural approaches to facilitate the interpretation of lipid-like cryo-EM densities and to reveal the molecular identities of protein-lipid interactions within a bilayer environment. We demonstrate this by application of our open-source LipIDens code to ten diverse membrane protein structures which exhibit lipid-like densities.


Subject(s)
Membrane Proteins , Molecular Dynamics Simulation , Membrane Proteins/chemistry , Cryoelectron Microscopy , Membrane Lipids , Protein Conformation
2.
Sci Adv ; 7(46): eabj5255, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34757782

ABSTRACT

The fungal plasma membrane H+-ATPase Pma1 is a vital enzyme, generating a proton-motive force that drives the import of essential nutrients. Autoinhibited Pma1 hexamers in the plasma membrane of starving fungi are activated by glucose signaling and subsequent phosphorylation of the autoinhibitory domain. As related P-type adenosine triphosphatases (ATPases) are not known to oligomerize, the physiological relevance of Pma1 hexamers remained unknown. We have determined the structure of hexameric Pma1 from Neurospora crassa by electron cryo-microscopy at 3.3-Å resolution, elucidating the molecular basis for hexamer formation and autoinhibition and providing a basis for structure-based drug development. Coarse-grained molecular dynamics simulations in a lipid bilayer suggest lipid-mediated contacts between monomers and a substantial protein-induced membrane deformation that could act as a proton-attracting funnel.

3.
Proc Natl Acad Sci U S A ; 117(49): 31114-31122, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33229570

ABSTRACT

The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is a P-type ATPase that transports Ca2+ from the cytosol into the sarco(endo)plasmic reticulum (SR/ER) lumen, driven by ATP. This primary transport activity depends on tight coupling between movements of the transmembrane helices forming the two Ca2+-binding sites and the cytosolic headpiece mediating ATP hydrolysis. We have addressed the molecular basis for this intramolecular communication by analyzing the structure and functional properties of the SERCA mutant E340A. The mutated Glu340 residue is strictly conserved among the P-type ATPase family of membrane transporters and is located at a seemingly strategic position at the interface between the phosphorylation domain and the cytosolic ends of 5 of SERCA's 10 transmembrane helices. The mutant displays a marked slowing of the Ca2+-binding kinetics, and its crystal structure in the presence of Ca2+ and ATP analog reveals a rotated headpiece, altered connectivity between the cytosolic domains, and an altered hydrogen bonding pattern around residue 340. Supported by molecular dynamics simulations, we conclude that the E340A mutation causes a stabilization of the Ca2+ sites in a more occluded state, hence displaying slowed dynamics. This finding underpins a crucial role of Glu340 in interdomain communication between the headpiece and the Ca2+-binding transmembrane region.


Subject(s)
Calcium-Binding Proteins/ultrastructure , Calcium/metabolism , Protein Conformation, alpha-Helical , Sarcoplasmic Reticulum Calcium-Transporting ATPases/ultrastructure , Adenosine Triphosphate/chemistry , Amino Acid Sequence/genetics , Asparagine/chemistry , Binding Sites/genetics , Calcium/chemistry , Calcium Signaling/genetics , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Crystallography, X-Ray , Cytosol/metabolism , Escherichia coli/enzymology , Humans , Hydrogen Bonding , Kinetics , Molecular Dynamics Simulation , Mutation/genetics , Phosphorylation/genetics , Protein Domains/genetics , Protein Structure, Secondary , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Tryptophan/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...