Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Environ Health ; 38(2): 229-253, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-35302721

ABSTRACT

The association between childhood leukemia and extremely low frequency magnetic fields (ELF-MF) generated by power lines and various electric appliances has been studied extensively during the past 40 years. However, the conditions under which ELF-MF represent a risk factor for leukemia are still unclear. Therefore, we have performed a systematic review and meta-analysis to clarify the relation between ELF-MF from several sources and childhood leukemia. We have systematically searched Medline, Scopus, Cochrane Database of Systematic Review and DARE to identify each article that has examined the relationship between ELF-MF and childhood leukemia. We have performed a global meta-analysis that takes into account the different measures used to assess magnetic field exposure: magnetic flux density measurements (<0.2 µT vs. >0.2 µT), distances between the child's home and power lines (>200 m vs. <200 m) and wire codings (low current configuration vs. high current configuration). Moreover, meta-analyses either based on magnetic flux densities, on proximity to power lines or on wire codings have been performed. The association between electric appliances and childhood leukemia has also been examined. Of the 863 references identified, 38 studies have been included in our systematic review. Our global meta-analysis indicated an association between childhood leukemia and ELF-MF (21 studies, pooled OR=1.26; 95% CI 1.06-1.49), an association mainly explained by the studies conducted before 2000 (earlier studies: pooled OR=1.51; 95% CI 1.26-1.80 vs. later studies: pooled OR=1.04; 95% CI 0.84-1.29). Our meta-analyses based only on magnetic field measurements indicated that the magnetic flux density threshold associated with childhood leukemia is higher than 0.4 µT (12 studies, >0.4 µT: pooled OR=1.37; 95% CI 1.05-1.80; acute lymphoblastic leukemia alone: seven studies, >0.4 µT: pooled OR=1.88; 95% CI 1.31-2.70). Lower magnetic fields were not associated with leukemia (12 studies, 0.1-0.2 µT: pooled OR=1.04; 95% CI 0.88-1.24; 0.2-0.4 µT: pooled OR=1.07; 95% CI 0.87-1.30). Our meta-analyses based only on distances (five studies) showed that the pooled ORs for living within 50 m and 200 m of power lines were 1.11 (95% CI 0.81-1.52) and 0.98 (95% CI 0.85-1.12), respectively. The pooled OR for living within 50 m of power lines and acute lymphoblastic leukemia analyzed separately was 1.44 (95% CI 0.72-2.88). Our meta-analyses based only on wire codings (five studies) indicated that the pooled OR for the very high current configuration (VHCC) was 1.23 (95% CI 0.72-2.10). Finally, the risk of childhood leukemia was increased after exposure to electric blankets (four studies, pooled OR=2.75; 95% CI 1.71-4.42) and, to a lesser extent, electric clocks (four studies, pooled OR=1.27; 95% CI 1.01-1.60). Our results suggest that ELF-MF higher than 0.4 µT can increase the risk of developing leukemia in children, probably acute lymphoblastic leukemia. Prolonged exposure to electric appliances that generate magnetic fields higher than 0.4 µT like electric blankets is associated with a greater risk of childhood leukemia.


Subject(s)
Electromagnetic Fields , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Electromagnetic Fields/adverse effects , Magnetic Fields , Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology , Cohort Studies , Case-Control Studies , Environmental Exposure/adverse effects
2.
Neuroinformatics ; 20(3): 811-824, 2022 07.
Article in English | MEDLINE | ID: mdl-35266105

ABSTRACT

Accurate electromagnetic modeling of the head of a subject is of main interest in the fields of source reconstruction and brain stimulation. Those processes rely heavily on the quality of the model and, even though the geometry of the tissues can be extracted from magnetic resonance images (MRI) or computed tomography (CT), their physical properties such as the electrical conductivity are difficult to measure with non intrusive techniques. In this paper, we propose a tool to assess the uncertainty in the model parameters, the tissue conductivity, as well as compute a parametric forward models for electroencephalography (EEG) and transcranial direct current stimulation (tDCS) current distribution.


Subject(s)
Transcranial Direct Current Stimulation , Brain/diagnostic imaging , Brain/physiology , Computer Simulation , Electroencephalography/methods , Electromagnetic Phenomena , Magnetic Resonance Imaging/methods , Transcranial Direct Current Stimulation/methods
3.
Bioelectromagnetics ; 41(6): 425-437, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32602188

ABSTRACT

The hypothesis of an electromagnetic origin of idiopathic environmental intolerance (IEI) attributed to electromagnetic fields (EMF) has been widely investigated by provocation studies, which consist of deliberately exposing people with IEI-EMF in laboratory settings to particular EMF to observe volunteers' reactions. In the majority of these studies, reactions have been found to be independent of exposure. However, most of these studies suffer from design and methodological limitations that might bias their findings or reduce their precision. As provocation studies are best suited for isolating the effects of EMF, innovative protocols should be applied. In the ExpoComm project (PNREST Anses, EST/2017/2 RF/19), several innovations have been introduced: the involvement of people with IEI-EMF in the development of the protocol, the attenuation of the anxiogenic nature of the tests, the individualization of the protocol, the validation of the neutral or normal reactivity state before the test, and the use of a cocktail of real, rather than artificially generated, sources. The objective of involving people with IEI-EMF was to increase the relevance and acceptability of the protocol, while respecting technical constraints and scientific quality requirements. This paper describes the protocol resulting from the collaborative process. Bioelectromagnetics. 2020;41:425-437. © 2020 Bioelectromagnetics Society.


Subject(s)
Biological Assay/methods , Electromagnetic Fields/adverse effects , Multiple Chemical Sensitivity/etiology , Cell Phone , Humans , Inventions
4.
Neuroimage ; 103: 542-551, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25204867

ABSTRACT

We present a finite element modeling (FEM) implementation for solving the forward problem in electroencephalography (EEG). The solution is based on Helmholtz's principle of reciprocity which allows for dramatically reduced computational time when constructing the leadfield matrix. The approach was validated using a 4-shell spherical model and shown to perform comparably with two current state-of-the-art alternatives (OpenMEEG for boundary element modeling and SimBio for finite element modeling). We applied the method to real human brain MRI data and created a model with five tissue types: white matter, gray matter, cerebrospinal fluid, skull, and scalp. By calculating conductivity tensors from diffusion-weighted MR images, we also demonstrate one of the main benefits of FEM: the ability to include anisotropic conductivities within the head model. Root-mean square deviation between the standard leadfield and the leadfield including white-matter anisotropy showed that ignoring the directional conductivity of white matter fiber tracts leads to orientation-specific errors in the forward model. Realistic head models are necessary for precise source localization in individuals. Our approach is fast, accurate, open-source and freely available online.


Subject(s)
Brain Mapping/methods , Brain/physiology , Models, Neurological , Models, Theoretical , Diffusion Magnetic Resonance Imaging , Electroencephalography , Finite Element Analysis , Head , Humans
5.
Philos Trans A Math Phys Eng Sci ; 362(1816): 629-45, 2004 Mar 15.
Article in English | MEDLINE | ID: mdl-15306511

ABSTRACT

We present a new algorithm for the numerical solution of problems of electromagnetic or acoustic scattering by large, convex obstacles. This algorithm combines the use of an ansatz for the unknown density in a boundary-integral formulation of the scattering problem with an extension of the ideas of the method of stationary phase. We include numerical results illustrating the high-order convergence of our algorithm as well as its asymptotically bounded computational cost as the frequency increases.

SELECTION OF CITATIONS
SEARCH DETAIL
...