Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetologia ; 47(5): 926-36, 2004 May.
Article in English | MEDLINE | ID: mdl-15085339

ABSTRACT

AIMS/HYPOTHESIS: Protein hydrolysates (peptones) increase not only glucagon-like peptide-1 (GLP-1) secretion but also transcription of the proglucagon ( PG) gene in the intestine. The critical physiological roles of gut-derived GLPs raised hope for their therapeutic use in several disorders, especially GLP-1 in diabetes. We aimed to investigate the molecular mechanisms involved in this nutrient- PG gene interaction. METHODS: Wild-type and mutated PG promoter fragments fused to the luciferase reporter gene were transfected into enteroendocrine STC-1 cells, which were then either treated or not with peptones. Co-transfection with expression vectors of dominant-negative forms of cAMP response element binding protein (CREB) and protein kinase A (PKA) proteins were performed, as well as electrophoresis mobility shift assays. RESULTS: Deletion analysis showed that the promoter region spanning between -350 and -292 bp was crucial for the transcriptional stimulation induced by peptones. Site-directed mutagenesis of the canonical cAMP response element (CRE(PG)) and of the adjacent putative CRE site (CRE-like1) led to a dramatic inhibition of the promoter responsiveness to peptones. Over expression of a dominant-negative mutant of CREB or of PKA produced a comparable and selective inhibitory effect on the activity of transfected promoter fragment containing the -350/-292 sequence. EMSA showed that CREB and fra2 transcription factors bound to CRE(PG) and CRE-like1 elements respectively, independently of peptone treatment. CONCLUSIONS/INTERPRETATION: Our report identified cis- and trans-regulatory elements implicated in the transcriptional control of PG gene by nutrients in enteroendocrine cells. It highlights the role of a previously unsuspected CRE-like1 element, and emphasises the importance of CRE-related sequences in the regulation of PG gene transcription in the intestine.


Subject(s)
Cyclic AMP Response Element-Binding Protein/physiology , Glucagon/genetics , Protein Precursors/genetics , Animals , Base Sequence , Cell Line, Tumor , Cells, Cultured , Cloning, Molecular , DNA Primers , Intestines , Mice , Mice, Transgenic , Mutagenesis, Site-Directed , Proglucagon , Promoter Regions, Genetic , Sequence Deletion , Transcription, Genetic
2.
FEBS Lett ; 503(1): 19-24, 2001 Aug 10.
Article in English | MEDLINE | ID: mdl-11513847

ABSTRACT

The expression of rab3A and rab3D isoforms in the enteroendocrine, cholecystokinin-secreting, cell lines STC-1 and GLUTag is here demonstrated. In contrast, rab3B is undetectable in these two cell lines, and rab3C is only slightly expressed in GLUTag cells. Using a transient co-transfection system with human growth hormone as reporter protein, we show that overexpression of the GTPase-deficient mutant rab3AQ81L, but not rab3DQ81L, significantly decreases human growth hormone secretory responses to various agonists in STC-1 cells. These results indicate that endocrine cell lines of intestinal origin express rab3A and rab3D proteins, but the GTP-bound form of rab3A only acts as a negative modulator in the control of cholecystokinin secretion from STC-1 cells.


Subject(s)
Cholecystokinin/metabolism , Exocytosis/physiology , rab3A GTP-Binding Protein/physiology , Animals , Cell Line , Genes, Reporter , Growth Hormone/genetics , Immunohistochemistry , Mice , Mutation , Rats , Transfection , rab3A GTP-Binding Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...