Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 14(645): eabn0402, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35584229

ABSTRACT

Cystine-dense peptides (CDPs) are a miniprotein class that can drug difficult targets with high affinity and low immunogenicity. Tools for their design, however, are not as developed as those for small-molecule and antibody drugs. CDPs have diverse taxonomic origins, but structural characterization is lacking. Here, we adapted Iterative Threading ASSEmbly Refinement (I-TASSER) and Rosetta protein modeling software for structural prediction of 4298 CDP scaffolds and performed in silico prescreening for CDP binders to targets of interest. Mammalian display screening of a library of docking-enriched, methionine and tyrosine scanned (DEMYS) CDPs against PD-L1 yielded binders from four distinct CDP scaffolds. One was affinity-matured, and cocrystallography yielded a high-affinity (KD = 202 pM) PD-L1-binding CDP that competes with PD-1 for PD-L1 binding. Its subsequent incorporation into a CD3-binding bispecific T cell engager produced a molecule with pM-range in vitro T cell killing potency and which substantially extends survival in two different xenograft tumor-bearing mouse models. Both in vitro and in vivo, the CDP-incorporating bispecific molecule outperformed a comparator antibody-based molecule. This CDP modeling and DEMYS technique can accelerate CDP therapeutic development.


Subject(s)
Antibodies, Bispecific , T-Lymphocytes , Animals , Humans , Mice , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , B7-H1 Antigen , CD3 Complex , Cystine , Disease Models, Animal , Mammals , Peptides
2.
Commun Biol ; 4(1): 1240, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716407

ABSTRACT

Circular tandem repeat proteins ('cTRPs') are de novo designed protein scaffolds (in this and prior studies, based on antiparallel two-helix bundles) that contain repeated protein sequences and structural motifs and form closed circular structures. They can display significant stability and solubility, a wide range of sizes, and are useful as protein display particles for biotechnology applications. However, cTRPs also demonstrate inefficient self-assembly from smaller subunits. In this study, we describe a new generation of cTRPs, with longer repeats and increased interaction surfaces, which enhanced the self-assembly of two significantly different sizes of homotrimeric constructs. Finally, we demonstrated functionalization of these constructs with (1) a hexameric array of peptide-binding SH2 domains, and (2) a trimeric array of anti-SARS CoV-2 VHH domains. The latter proved capable of sub-nanomolar binding affinities towards the viral receptor binding domain and potent viral neutralization function.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Protein Engineering/methods , Proteins/chemistry , Proteins/metabolism , SARS-CoV-2/metabolism , Tandem Repeat Sequences , Amino Acid Sequence , COVID-19/virology , Computer Simulation , Crystallization , HEK293 Cells , Humans , Models, Molecular , Neutralization Tests , Protein Binding , Protein Domains , Protein Folding , Protein Structure, Secondary , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
3.
Sci Transl Med ; 12(533)2020 03 04.
Article in English | MEDLINE | ID: mdl-32132215

ABSTRACT

On-target, off-tissue toxicity limits the systemic use of drugs that would otherwise reduce symptoms or reverse the damage of arthritic diseases, leaving millions of patients in pain and with limited physical mobility. We identified cystine-dense peptides (CDPs) that rapidly accumulate in cartilage of the knees, ankles, hips, shoulders, and intervertebral discs after systemic administration. These CDPs could be used to concentrate arthritis drugs in joints. A cartilage-accumulating peptide, CDP-11R, reached peak concentration in cartilage within 30 min after administration and remained detectable for more than 4 days. Structural analysis of the peptides by crystallography revealed that the distribution of positive charge may be a distinguishing feature of joint-accumulating CDPs. In addition, quantitative whole-body autoradiography showed that the disulfide-bonded tertiary structure is critical for cartilage accumulation and retention. CDP-11R distributed to joints while carrying a fluorophore imaging agent or one of two different steroid payloads, dexamethasone (dex) and triamcinolone acetonide (TAA). Of the two payloads, the dex conjugate did not advance because the free drug released into circulation was sufficient to cause on-target toxicity. In contrast, the CDP-11R-TAA conjugate alleviated joint inflammation in the rat collagen-induced model of rheumatoid arthritis while avoiding toxicities that occurred with nontargeted steroid treatment at the same molar dose. This conjugate shows promise for clinical development and establishes proof of concept for multijoint targeting of disease-modifying therapeutic payloads.


Subject(s)
Arthritis, Experimental , Adrenal Cortex Hormones , Animals , Arthritis, Experimental/drug therapy , Cartilage , Humans , Peptides , Rats , Steroids
4.
J Exp Med ; 216(10): 2331-2347, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31345930

ABSTRACT

Many tested vaccines fail to provide protection against disease despite the induction of antibodies that bind the pathogen of interest. In light of this, there is much interest in rationally designed subunit vaccines that direct the antibody response to protective epitopes. Here, we produced a panel of anti-idiotype antibodies able to specifically recognize the inferred germline version of the human immunodeficiency virus 1 (HIV-1) broadly neutralizing antibody b12 (iglb12). We determined the crystal structure of two anti-idiotypes in complex with iglb12 and used these anti-idiotypes to identify rare naive human B cells expressing B cell receptors with similarity to iglb12. Immunization with a multimerized version of this anti-idiotype induced the proliferation of transgenic murine B cells expressing the iglb12 heavy chain in vivo, despite the presence of deletion and anergy within this population. Together, our data indicate that anti-idiotypes are a valuable tool for the study and induction of potentially protective antibodies.


Subject(s)
Antibodies, Anti-Idiotypic/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Precursor Cells, B-Lymphoid/immunology , Adult , Animals , Female , HIV Infections/genetics , HIV-1/genetics , Humans , Male , Mice , Mice, Transgenic
5.
Nat Struct Mol Biol ; 25(3): 270-278, 2018 03.
Article in English | MEDLINE | ID: mdl-29483648

ABSTRACT

Peptides folded through interwoven disulfides display extreme biochemical properties and unique medicinal potential. However, their exploitation has been hampered by the limited amounts isolatable from natural sources and the expense of chemical synthesis. We developed reliable biological methods for high-throughput expression, screening and large-scale production of these peptides: 46 were successfully produced in multimilligram quantities, and >600 more were deemed expressible through stringent screening criteria. Many showed extreme resistance to temperature, proteolysis and/or reduction, and all displayed inhibitory activity against at least 1 of 20 ion channels tested, thus confirming their biological functionality. Crystal structures of 12 confirmed proper cystine topology and the utility of crystallography to study these molecules but also highlighted the need for rational classification. Previous categorization attempts have focused on limited subsets featuring distinct motifs. Here we present a global definition, classification and analysis of >700 structures of cystine-dense peptides, providing a unifying framework for these molecules.


Subject(s)
Cystine/chemistry , Peptides/chemistry , Amino Acid Sequence , Crystallography, X-Ray , HEK293 Cells , Humans , Ion Channels/antagonists & inhibitors , Models, Molecular , Peptide Biosynthesis , Peptides/classification , Peptides/pharmacology
6.
Neoplasia ; 19(6): 471-482, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28499126

ABSTRACT

Cancer cells may co-opt the NKG2D lymphocyte receptor to complement the presence of its ligands for autonomous stimulation of oncogenic signaling. Previous studies raise the possibility that cancer cell NKG2D may induce high malignancy traits, but its full oncogenic impact is unknown. Using epithelial ovarian cancer as model setting, we show here that ex vivo NKG2D+ cancer cells have stem-like capacities, and provide formal in vivo evidence linking NKG2D stimulation with the development and maintenance of these functional states. NKG2D+ ovarian cancer cell populations harbor substantially greater capacities for self-renewing in vitro sphere formation and in vivo tumor initiation in immunodeficient (NOD scid gamma) mice than NKG2D- controls. Sphere formation and tumor initiation are impaired by NKG2D silencing or ligand blockade using antibodies or a newly designed pan ligand-masking NKG2D multimer. In further support of pathophysiological significance, a prospective study of 47 high-grade serous ovarian cancer cases revealed that the odds of disease recurrence were significantly greater and median progression-free survival rates higher among patients with above and below median NKG2D+ cancer cell frequencies, respectively. Collectively, our results define cancer cell NKG2D as an important regulator of tumor initiation in ovarian cancer and presumably other malignancies and thus challenge current efforts in immunotherapy aimed at enhancing NKG2D function.


Subject(s)
Biomarkers, Tumor/genetics , Cell Proliferation/drug effects , NK Cell Lectin-Like Receptor Subfamily K/genetics , Ovarian Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Animals , Antibodies/administration & dosage , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , Middle Aged , NK Cell Lectin-Like Receptor Subfamily K/antagonists & inhibitors , Neoplasm Staging , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Ovarian Neoplasms/pathology , Xenograft Model Antitumor Assays
7.
Transplant Direct ; 1(2)2015 Mar.
Article in English | MEDLINE | ID: mdl-25988188

ABSTRACT

BACKGROUND: CD28 signal blockade following T cell receptor activation is under intense investigation as a tolerance-inducing therapy for transplantation. Our goal is to produce a CD28-specific reagent as a therapy for the prevention of graft rejection and graft-versus-host disease in the canine model of allogeneic hematopoietic cell transplantation (HCT). METHODS: We infused a monoclonal mouse anti-canine CD28 antibody (1C6 mAb) into four dogs and a fragment of antigen-binding (1C6 Fab) into two dogs. Pharmacokinetics, pathology, cytokine release, and the crystal structure of 1C6 Fv were evaluated. RESULTS: Within an hour of an IV injection of the 1C6 mAb, the dogs became leukopenic and developed a steroid-refractory cytokine storm. Two of the dogs developed high fevers, one experienced diffuse alveolar hemorrhage, and another developed gastrointestinal hemorrhage. The cytokine storm was characterized by elevated plasma levels of MCP-1, IP-10, IL-10, IL-6, and TNF-α. In addition, one dog showed elevated levels of IL-2, IL-8, and IL-18. In contrast, infusion of 1C6 Fab was well tolerated without any side effects. Dry-coating 1C6 mAb onto tissue culture plates induced CD3-independent proliferation and TNF-alpha production. Crystal structure analysis revealed that 1C6 binds to canine CD28 in a manner different than previously reported for conventional agonistic or superagonistic antibodies. CONCLUSIONS: These results indicate that dogs and humans develop a similar cytokine storm following infusion ofanti-CD28 mAb, providing an appropriate large animal for further study. 1C6 Fab warrants evaluation as a tolerance-inducing reagent in the canine model of allogeneic HCT.

SELECTION OF CITATIONS
SEARCH DETAIL
...