Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
bioRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826222

ABSTRACT

The immunocompromised are at high risk of prolonged SARS-CoV-2 infection and progression to severe COVID-19. However, efficacy of late-onset direct-acting antiviral (DAA) therapy with therapeutics in clinical use and experimental drugs to mitigate persistent viral replication is unclear. In this study, we employed an immunocompromised mouse model, which supports prolonged replication of SARS-CoV-2 to explore late-onset treatment options. Tandem immuno-depletion of CD4 + and CD8 + T cells in C57BL/6 mice followed by infection with SARS-CoV-2 variant of concern (VOC) beta B.1.351 resulted in prolonged infection with virus replication for five weeks after inoculation. Early-onset treatment with nirmatrelvir/ritonavir (paxlovid) or molnupiravir was only moderately efficacious, whereas the experimental therapeutic 4'-fluorourdine (4'-FlU, EIDD-2749) significantly reduced virus load in upper and lower respiratory compartments four days post infection (dpi). All antivirals significantly lowered virus burden in a 7-day treatment regimen initiated 14 dpi, but paxlovid-treated animals experienced rebound virus replication in the upper respiratory tract seven days after treatment end. Viral RNA was detectable 28 dpi in paxlovid-treated animals, albeit not in the molnupiravir or 4'-FlU groups, when treatment was initiated 14 dpi and continued for 14 days. Low-level virus replication continued 35 dpi in animals receiving vehicle but had ceased in all treatment groups. These data indicate that late-onset DAA therapy significantly shortens the duration of persistent virus replication in an immunocompromised host, which may have implications for clinical use of antiviral therapeutics to alleviate the risk of progression to severe disease in highly vulnerable patients. Importance: Four years after the onset of the global COVID-19 pandemic, the immunocompromised are at greatest risk of developing life-threatening severe disease. However, specific treatment plans for this most vulnerable patient group have not yet been developed. Employing a CD4 + and CD8 + T cell-depleted immunocompromised mouse model of SARS-CoV-2 infection, we explored therapeutic options of persistent infections with standard-of-care paxlovid, molnupiravir, and the experimental therapeutic 4'-FlU. Late-onset treatment initiated 14 days after infection was efficacious, but only 4'-FlU was rapidly sterilizing. No treatment-experienced viral variants with reduced susceptibility to the drugs emerged, albeit virus replication rebounded in animals of the paxlovid group after treatment end. This study supports the use of direct-acting antivirals for late-onset management of persistent SARS-CoV-2 infection in immunocompromised hosts. However, treatment courses likely require to be extended for maximal therapeutic benefit, calling for appropriately powered clinical trials to meet the specific needs of this patient group.

2.
Cell Rep ; 43(6): 114292, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823020

ABSTRACT

Interleukin (IL)-22 promotes host-microbiota homeostasis. We sought to identify microbiota metabolite(s) that drive intestinal IL-22 production. We observed that exposing Peyer's patch cells (PPCs), ex vivo, to fecal supernatants (FSs) recapitulates fermentable fiber- and microbiota-dependent IL-22 production, and cellular sources thereof, thus supporting the use of this model. An interrogation of FSs generated from mice fed the fermentable fiber inulin (FS-Inu) revealed that its IL-22-inducing activity is mediated by heat-labile protein. Fractionation of FS-Inu by ion-exchange chromatography, and subsequent proteomic analysis of IL-22-inducing fractions, indicates that outer membrane protein A (OmpA) might be a microbial driver of IL-22 expression. Concomitantly, recombinant OmpA from Parabacteroides goldsteinii, which is enriched by an inulin diet, induces IL-22 production and expression of the IL-22-dependent genes REG3γ and -ß, in PPCs and mice. Thus, OmpA is one bacterial inducer of IL-22 expression, potentially linking diet, mucosal immune homeostasis, and gut health.

3.
Contemp Clin Trials Commun ; 38: 101278, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38435430

ABSTRACT

Individuals with cystic fibrosis (CF) have dysfunctional intestinal microbiota and increased gastrointestinal (GI) inflammation also known as GI dysbiosis. It is hypothesized that administration of high-dose cholecalciferol (vitamin D3) together with a prebiotic (inulin) will be effective, and possibly additive or synergistic, in reducing CF-related GI and airway dysbiosis. Thus, a 2 x 2 factorial design, placebo-controlled, double-blinded, pilot and feasibility, clinical trial was proposed to test this hypothesis. Forty adult participants with CF were block-randomized into one of four groups: 1) high-dose oral vitamin D3 (50,000 IU weekly) plus oral prebiotic placebo daily; 2) oral prebiotic (12 g inulin daily) plus oral placebo vitamin D3 weekly; 3) combined oral vitamin D3 weekly and oral prebiotic inulin daily; and 4) oral vitamin D3 placebo weekly and oral prebiotic placebo. The primary endpoints included 12-week changes in the microbial bacterial communities, gut and airway microbiota richness and diversity before and after the intervention. This pilot study examined whether vitamin D3 with or without prebiotics supplementation was feasible, changed airway and gut microbiota, and reduced dysbiosis, which in turn, may improve health outcomes and quality of life of patients with CF.

4.
Nat Commun ; 15(1): 1189, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331906

ABSTRACT

Measles cases have surged pre-COVID-19 and the pandemic has aggravated the problem. Most measles-associated morbidity and mortality arises from destruction of pre-existing immune memory by measles virus (MeV), a paramyxovirus of the morbillivirus genus. Therapeutic measles vaccination lacks efficacy, but little is known about preserving immune memory through antivirals and the effect of respiratory disease history on measles severity. We use a canine distemper virus (CDV)-ferret model as surrogate for measles and employ an orally efficacious paramyxovirus polymerase inhibitor to address these questions. A receptor tropism-intact recombinant CDV with low lethality reveals an 8-day advantage of antiviral treatment versus therapeutic vaccination in maintaining immune memory. Infection of female ferrets with influenza A virus (IAV) A/CA/07/2009 (H1N1) or respiratory syncytial virus (RSV) four weeks pre-CDV causes fatal hemorrhagic pneumonia with lung onslaught by commensal bacteria. RNAseq identifies CDV-induced overexpression of trefoil factor (TFF) peptides in the respiratory tract, which is absent in animals pre-infected with IAV. Severe outcomes of consecutive IAV/CDV infections are mitigated by oral antivirals even when initiated late. These findings validate the morbillivirus immune amnesia hypothesis, define measles treatment paradigms, and identify priming of the TFF axis through prior respiratory infections as risk factor for exacerbated morbillivirus disease.


Subject(s)
Distemper Virus, Canine , Influenza A Virus, H1N1 Subtype , Measles , Animals , Female , Ferrets , Measles/complications , Measles virus/genetics , Distemper Virus, Canine/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
5.
Cell Host Microbe ; 32(3): 335-348.e8, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38295788

ABSTRACT

Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AMs). In SFB-negative mice, AMs were quickly depleted as RVI progressed. In contrast, AMs from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AMs from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AMs into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity.


Subject(s)
Gastrointestinal Microbiome , Virus Diseases , Animals , Mice , Macrophages, Alveolar , Phagocytosis , Interferons , Bacteria
6.
Cell Mol Gastroenterol Hepatol ; 17(5): 719-735, 2024.
Article in English | MEDLINE | ID: mdl-38262588

ABSTRACT

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a male-dominant disease, but targeted sex hormone therapies have not been successful. Bile acids are a potential liver carcinogen and are biomolecules with hormone-like effects. A few studies highlight their potential sex dimorphism in physiology and disease. We hypothesized that bile acids could be a potential molecular signature that explains sex disparity in HCC. METHODS & RESULTS: We used the farnesoid X receptor knockout (FxrKO) mouse model to study bile acid-dependent HCC. Temporal tracking of circulating bile acids determined more than 80% of FxrKO females developed spontaneous cholemia (ie, serum total bile acids ≥40 µmol/L) as early as 8 weeks old. Opposingly, FxrKO males were highly resistant to cholemia, with ∼23% incidence even when 26 weeks old. However, FxrKO males demonstrated higher levels of deoxycholate than females. Compared with males, FxrKO females had more severe cholestatic liver injury and further aberrancies in bile acid metabolism. Yet, FxrKO females expressed more detoxification transcripts and had greater renal excretion of bile acids. Intervention with CYP7A1 (rate limiting enzyme for bile acid biosynthesis) deficiency or taurine supplementation either completely or partially normalized bile acid levels and liver injury in FxrKO females. Despite higher cholemia prevalence in FxrKO females, their tumor burden was less compared with FxrKO males. An exception to this sex-dimorphic pattern was found in a subset of male and female FxrKO mice born with congenital cholemia due to portosystemic shunt, where both sexes had comparable robust HCC. CONCLUSIONS: Our study highlights bile acids as sex-dimorphic metabolites in HCC except in the case of portosystemic shunt.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Male , Female , Animals , Carcinoma, Hepatocellular/genetics , Bile Acids and Salts , Mice, Knockout
7.
Microbiome ; 12(1): 5, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38178260

ABSTRACT

BACKGROUND: The observation that the intestinal microbiota is  central in the development of IBD suggests that dietary fiber, the microbiota's primary source of nourishment, could play a central role in these diseases. Accordingly, enriching diets with specific soluble fibers remodels microbiota and modulates colitis sensitivity. In humans, a recent study suggests that the microbiota of select IBD patients might influence the impacts they would experience upon fiber exposure. We sought here to define the extent to which individual microbiotas varied in their responsiveness to purified soluble fiber inulin and psyllium. Moreover, the extent to which such variance might impact proneness to colitis. RESULTS: We observed a high level of inter-individual variation in microbiota responsiveness to fiber inulin and psyllium: while microbiotas from select donors exhibited stark fiber-induced modulation in composition, pro-inflammatory potential, and metabolomic profile, others were only minimally impacted. Mice transplanted with fiber-sensitive microbiomes exhibited colitis highly modulated by soluble fiber consumption, while mice receiving fiber-resistant microbiotas displayed colitis severity irrespective of fiber exposure. CONCLUSION: The extent to which select soluble fibers alter proneness to colitis is highly influenced by an individual's microbiota composition and further investigation of individual microbiota responsiveness toward specific dietary fiber could pave the way to personalized fiber-based intervention, both in IBD patients and healthy individuals. Video Abstract.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Psyllium , Humans , Mice , Animals , Psyllium/adverse effects , Inulin , Colitis/chemically induced , Dietary Fiber
9.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37790571

ABSTRACT

Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and SARS-CoV-2, was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AM). In SFB-negative mice, AM were quickly depleted as RVI progressed. In contrast, AM from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AM from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AM into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity. One sentence summary: Intestinal segmented filamentous bacteria reprogram alveolar macrophages promoting nonphlogistic defense against respiratory viruses.

10.
Metabol Open ; 20: 100256, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38115865

ABSTRACT

Aims: Metformin is the broadly accepted the first-line medication for diabetes. Its use, however, is limited by gastrointestinal side effects present in approximately 25% of patients. This study aimed to better understand the interplay between metformin intolerance and gut microbiota among Black individuals with diabetes. Methods: We performed a cross-sectional study among 29 Black individuals living with diabetes with or without metformin intolerance. Participants with mean age 59±11, 58% female, were stratified into three groups: 1)intolerant: metformin intolerance in the past, not on metformin; 2)partially intolerant: mild to moderate gastrointestinal symptoms, currently taking metformin 3)tolerant: using metformin without symptoms. We collected and analyzed rectal swabs and analyzed microbiota composition using V3-V4 regions of the 16s rRNA. Results: Metformin intolerant subjects trended towards having greatest alpha diversity, followed by tolerant and partially tolerant (Intolerant:4.9; Tolerant:4.2; Partially tolerant:3.9). Mean difference in alpha diversity for intolerant versus partially tolerant was 1.0 (95% CI-0.1,2.1) and intolerant versus tolerant were 0.7 (95% CI -0.4,1.8). Conclusion: This was the first study to evaluate the role of microbiota and metformin intolerance among Black individuals. We report on differences in alpha diversity as well as microbiota composition.

11.
PLoS Biol ; 21(9): e3002289, 2023 09.
Article in English | MEDLINE | ID: mdl-37725584

ABSTRACT

Dietary emulsifiers, including carboxymethylcellulose (CMC) and polysorbate 80 (P80), perturb gut microbiota composition and gene expression, resulting in a microbiota with enhanced capacity to activate host pro-inflammatory gene expression and invade the intestine's inner mucus layer. Such microbiota alterations promote intestinal inflammation, which can have a variety of phenotypic consequences including increased adiposity. Bacterial flagellin is a key mediator of emulsifiers' impact in that this molecule enables motility and is itself a pro-inflammatory agonist. Hence, we reasoned that training the adaptive mucosal immune system to exclude microbes that express flagellin might protect against emulsifiers. Investigating this notion found that immunizing mice with flagellin elicited an increase in mucosal anti-flagellin IgA and IgA-coated microbiota that would have otherwise developed in response to CMC and P80 consumption. Yet, eliciting these responses in advance via flagellin immunization prevented CMC/P80-induced increases in microbiota expression of pro-inflammatory agonists including LPS and flagellin. Furthermore, such immunization prevented CMC/P80-induced microbiota encroachment and deleterious pro-inflammatory consequences associated therewith, including colon shortening and increased adiposity. Hence, eliciting mucosal immune responses to pathobiont surface components, including flagellin, may be a means of combatting the array of inflammatory diseases that are promoted by emulsifiers and perhaps other modern microbiota stressors.


Subject(s)
Microbiota , Vaccination , Animals , Mice , Immunization , Diet , Obesity , Flagellin , Polysorbates/pharmacology , Immunoglobulin A
12.
Nutrients ; 15(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37630797

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of death in the United States, with roughly 700,000 CVD deaths every year [1]. [...].


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/prevention & control , Diet , Diet, Vegetarian
13.
Function (Oxf) ; 4(5): zqad040, 2023.
Article in English | MEDLINE | ID: mdl-37575479

ABSTRACT

Sporadic occurrence of congenital portosystemic shunt (PSS) at a rate of ∼1 out of 10 among C57BL/6 J mice, which are widely used in biomedical research, results in aberrancies in serologic, metabolic, and physiologic parameters. Therefore, mice with PSS should be identified as outliers in research. Accordingly, we sought methods to, reliably and efficiently, identify PSS mice. Serum total bile acids ≥ 40 µm is a bona fide biomarker of PSS in mice but utility of this biomarker is limited by its cost and invasiveness, particularly if large numbers of mice are to be screened. This led us to investigate if assay of urine might serve as a simple, inexpensive, noninvasive means of PSS diagnosis. Metabolome profiling uncovered that Krebs cycle intermediates, that is, citrate, α-ketoglutarate, and fumarate, were strikingly and distinctly elevated in the urine of PSS mice. We leveraged the iron-chelating and pH-lowering properties of such metabolites as the basis for 3 urine-based PSS screening tests: urinary iron-chelation assay, pH strip test, and phenol red assay. Our findings demonstrate the feasibility of using these colorimetric assays, whereby their readout can be assessed by direct observation, to diagnose PSS in an inexpensive, rapid, and noninvasive manner. Application of our urinary PSS screening protocols can aid biomedical research by enabling stratification of PSS mice, which, at present, likely confound numerous ongoing studies.


Subject(s)
Portasystemic Shunt, Transjugular Intrahepatic , Vascular Malformations , Animals , Mice , Mice, Inbred C57BL , Portal System/abnormalities , Biomarkers
14.
Gut Microbes ; 15(1): 2221095, 2023.
Article in English | MEDLINE | ID: mdl-37305942

ABSTRACT

Impacts of dietary fiber on intestinal inflammation are complex, but some specific semi-purified fibers, particularly psyllium, can protect humans and rodents against colitis. Mechanisms underlying such protection are not fully understood but may involve activation of the FXR bile acid receptor. Obesity and its associated consequences, referred to as metabolic syndrome, are associated with, and promoted by, low-grade inflammation in a variety of tissues including the intestine. Hence, we examined whether psyllium might ameliorate the low-grade intestinal inflammation that occurs in diet-induced obesity and, moreover, the extent to which it might ameliorate adiposity and/or dysglycemia in this disease model. We observed that enriching a high-fat diet with psyllium provided strong protection against the low-grade gut inflammation and metabolic consequences that were otherwise induced by the obesogenic diet. Such protection was fully maintained in FXR-deficient mice, indicating that distinct mechanisms mediate psyllium's protection against colitis and metabolic syndrome. Nor did psyllium's protection associate with, or require, fermentation or IL-22 production, both of which are key mediators of beneficial impacts of some other dietary fibers. Psyllium's beneficial impacts were not evident in germfree mice but were observed in Altered Schaedler Flora mice, in which psyllium modestly altered relative and absolute abundance of the small number of taxa present in these gnotobiotic mice. Thus, psyllium protects mice against diet-induced obesity/metabolic syndrome by a mechanism independent of FXR and fermentation but nonetheless requires the presence of at least a minimal microbiota.


Subject(s)
Colitis , Gastrointestinal Microbiome , Metabolic Syndrome , Psyllium , Humans , Animals , Mice , Metabolic Syndrome/prevention & control , Diet, Western , Obesity/prevention & control , Dietary Fiber , Inflammation
15.
Hepatol Commun ; 7(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37219858

ABSTRACT

BACKGROUND: HCC is the most common primary liver cancer and a leading cause of cancer-related mortality. Gut microbiota is a large collection of microbes, predominately bacteria, that harbor the gastrointestinal tract. Changes in gut microbiota that deviate from the native composition, that is, "dysbiosis," is proposed as a probable diagnostic biomarker and a risk factor for HCC. However, whether gut microbiota dysbiosis is a cause or a consequence of HCC is unknown. METHODS: To better understand the role of gut microbiota in HCC, mice deficient of toll-like receptor 5 (TLR5, a receptor for bacterial flagellin) as a model of spontaneous gut microbiota dysbiosis were crossed with farnesoid X receptor knockout mice (FxrKO), a genetic model for spontaneous HCC. Male FxrKO/Tlr5KO double knockout (DKO), FxrKO, Tlr5KO, and wild-type (WT) mice were aged to the 16-month HCC time point. RESULTS: Compared with FxrKO mice, DKO mice had more severe hepatooncogenesis at the gross, histological, and transcript levels and this was associated with pronounced cholestatic liver injury. The bile acid dysmetabolism in FxrKO mice became more aberrant in the absence of TLR5 due in part to suppression of bile acid secretion and enhanced cholestasis. Out of the 14 enriched taxon signatures seen in the DKO gut microbiota, 50% were dominated by the Proteobacteria phylum with expansion of the gut pathobiont γ-Proteobacteria that is implicated in HCC. CONCLUSIONS: Collectively, introducing gut microbiota dysbiosis by TLR5 deletion exacerbated hepatocarcinogenesis in the FxrKO mouse model.


Subject(s)
Carcinoma, Hepatocellular , Cholestasis , Liver Neoplasms , Toll-Like Receptor 5 , Animals , Male , Mice , Bile Acids and Salts , Carcinogenesis , Dysbiosis , Mice, Knockout , Toll-Like Receptor 5/genetics
16.
Int J Cancer ; 153(1): 44-53, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36878686

ABSTRACT

Gut barrier dysfunction can result in the liver being exposed to an elevated level of gut-derived bacterial products via portal circulation. Growing evidence suggests that systemic exposure to these bacterial products promotes liver diseases including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). However, prospective studies have not examined the association between biomarkers of gut barrier dysfunction and HCC risk in a population of hepatitis B or C viral (HBV/HCV) carriers. We investigated whether prediagnostic, circulating biomarkers of gut barrier dysfunction were associated with HCC risk, using the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer (REVEAL)-HBV and REVEAL-HCV cohorts from Taiwan. REVEAL-HBV included 185 cases and 161 matched controls, and REVEAL-HCV 96 cases and 96 matched controls. The biomarkers quantitated were immunoglobulin A (IgA), IgG, and IgM against lipopolysaccharide (LPS) and flagellin, soluble CD14 (an LPS coreceptor), and LPS-binding protein (LBP). Odds ratios (ORs) and 95% confidence intervals (CIs) for associations between biomarker levels and HCC were calculated using multivariable-adjusted logistic regression. A doubling of the circulating levels of antiflagellin IgA or LBP was associated with a 76% to 93% increased risk of HBV-related HCC (OR per one unit change in log2 antiflagellin IgA = 1.76, 95% CI: 1.06-2.93; OR for LBP = 1.93, 95% CI: 1.10-3.38). None of the other markers were associated with an increased risk of HBV-related or HCV-related HCC. Results were similar when cases diagnosed in the first 5 years of follow-up were excluded. Our findings contribute to understanding the interplay of gut barrier dysfunction and primary liver cancer etiology.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Hepatitis C , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/epidemiology , Liver Neoplasms/epidemiology , Hepatitis B virus , Prospective Studies , Lipopolysaccharides , Hepatitis B/complications , Hepatitis B/epidemiology , Cohort Studies , Biomarkers , Immunoglobulin A , Hepatitis C/complications , Risk Factors
17.
Gut Microbes ; 15(1): 2185031, 2023.
Article in English | MEDLINE | ID: mdl-36880647

ABSTRACT

Intestinal contents comprise the largest repository of immunogenic ligands of microbial origin. We undertook this study to assess the predominant microbe-associated molecular patterns (MAMPs) present therein and the receptors) that mediate the innate immune responses to them. Here, we demonstrated that intestinal contents from conventional, but not germ-free, mice and rats triggered robust innate immune responses in vitro and in vivo. Such immune responses were abrogated in the absence of either myeloid differentiation factor 88 (MyD88) or Toll-like receptor (TLR) 5, but not TLR4, suggesting that the stimuli was flagellin (i.e., protein subunit of flagella that drives bacterial motility). Accordingly, pre-treating intestinal extracts with proteinase, thereby degrading flagellin, was sufficient to block their ability to activate innate immune responses. Taken together, this work serves to underscore flagellin as a major, heat-stable and bioactive MAMP in the intestinal content that confers this milieu strong potential to trigger innate immune responses.


Subject(s)
Gastrointestinal Contents , Gastrointestinal Microbiome , Animals , Rats , Flagellin , Flagella , Immunity, Innate
18.
J Immunol ; 210(9): 1419-1427, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36946775

ABSTRACT

TLR5, which is activated by flagellin, plays an important role in initiating immune response to a broad spectrum of motile bacterial pathogens. TLRs induce intracellular signaling via dimerization of their TIR domains followed by adapter recruitment through multiple interactions of receptor and adapter TIRs. Here, a library of cell-permeable decoy peptides derived from the TLR5 TIR was screened for TLR5 signaling inhibition in the HEK-Blue-mTLR5 reporter cell line. The peptide demonstrating the strongest inhibition, 5R667, corresponded to the second helix of the region between the third and fourth ß-strands (helix C″). In addition to the TLR5-induced cytokine expression, 5R667 inhibited cytokine expression elicited by TLR4, TLR2, and TLR9. 5R667 also suppressed the systemic cytokine induction elicited by LPS administration in mice. 5R667 binding specificity was studied by time-resolved fluorescence spectroscopy in a cell-based assay. 5R667 demonstrated a multispecific binding pattern with respect to TIR domains: It bound TIRs of TLR adapters of the MyD88-dependent pathway, Toll/interleukin-1 receptor domain-containing adapter protein/MyD88 adapter-like (TIRAP) and MyD88, and also the TIR of TLR5. TR667, the peptide derived from the TIRAP region, which is structurally homologous to 5R667, demonstrated binding and inhibitory properties similar to that of 5R667. The surface-exposed residues within TIR regions represented by 5R667 and TR667 form motifs, which are nearly 90% conserved in vertebrate evolution and are distinctive of TLR5 and TIRAP TIR domains. Thus, we have identified an evolutionary conserved adapter recruitment motif within TLR5 TIR, the function of which can be inhibited by selective cell-permeable decoy peptides, which can serve as pan-specific TLR inhibitors.


Subject(s)
Myeloid Differentiation Factor 88 , Toll-Like Receptor 5 , Animals , Mice , Myeloid Differentiation Factor 88/metabolism , Signal Transduction , Peptides/metabolism , Cytokines/metabolism , Receptors, Interleukin-1/metabolism
20.
Gut Microbes ; 15(1): 2174407, 2023.
Article in English | MEDLINE | ID: mdl-36740862

ABSTRACT

Prevention of rotavirus (RV) infection by gut-resident segmented filamentous bacteria (SFB) is an example of the influence of gut microbiota composition on enteric viral infection. Yet, the mechanism by which SFB prevents RV infection is poorly understood. A recent report that SFB colonization of germfree mice generates retinoic acid (RA) thus activating RA receptor (RAR) signaling, which protected against Citrobacter rodentium infection, prompted us to investigate whether this pathway might contribute to SFB's protection against RV infection. Colonization of conventional mice by SFB indeed increased intestinal RA levels and direct administration of RA partially mimicked the protection against RV infection conferred by SFB. Moreover, blockade of RAR signaling eliminated SFB's protection against RV infection. Blockade of RAR signaling did not impact RV infection in the absence of SFB, nor did it alter the protection against RV infection conferred by bacterial flagellin, which in contrast to SFB, is dependent upon IL-22 signaling. SFB/RA-mediated prevention of RV infection was associated with an RA-dependent increase in enterocyte migration, consistent with the notion that enhanced anoikis is the ultimate means by which SFB, IL-22, and RA impede RV infection.


Subject(s)
Gastrointestinal Microbiome , Rotavirus Infections , Mice , Animals , Rotavirus Infections/prevention & control , Intestine, Small , Bacteria , Flagellin
SELECTION OF CITATIONS
SEARCH DETAIL
...