Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Leukemia ; 34(3): 771-786, 2020 03.
Article in English | MEDLINE | ID: mdl-31690822

ABSTRACT

The proximal DNA damage response kinase ATM is frequently inactivated in human malignancies. Germline mutations in the ATM gene cause Ataxia-telangiectasia (A-T), characterized by cerebellar ataxia and cancer predisposition. Whether ATM deficiency impacts on tumor initiation or also on the maintenance of the malignant state is unclear. Here, we show that Atm reactivation in initially Atm-deficient B- and T cell lymphomas induces tumor regression. We further find a reduced T cell abundance in B cell lymphomas from Atm-defective mice and A-T patients. Using T cell-specific Atm-knockout models, as well as allogeneic transplantation experiments, we pinpoint impaired immune surveillance as a contributor to cancer predisposition and development. Moreover, we demonstrate that Atm-deficient T cells display impaired proliferation capacity upon stimulation, due to replication stress. Altogether, our data indicate that T cell-specific restoration of ATM activity or allogeneic hematopoietic stem cell transplantation may prevent lymphomagenesis in A-T patients.


Subject(s)
Lymphoma/immunology , T-Lymphocytes/immunology , Alleles , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Proliferation , Etoposide/pharmacology , Hematopoietic Stem Cell Transplantation , Lymphoma/metabolism , Mice , Mice, Knockout , T-Lymphocytes/metabolism , Transplantation, Homologous , Treatment Outcome
2.
Mech Dev ; 138 Pt 2: 177-189, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26299253

ABSTRACT

Hox genes control divergent segment identities along the anteroposterior body axis of bilateral animals by regulating a large number of processes in a cell context-specific manner. How Hox proteins achieve this functional diversity is a long-standing question in developmental biology. In this study we investigate the role of alternative splicing in functional specificity of the Drosophila Hox gene Ultrabithorax (Ubx). We focus specifically on the embryonic central nervous system (CNS) and provide a description of temporal expression patterns of three major Ubx isoforms during development of this tissue. These analyses imply distinct functions for individual isoforms in different stages of neural development. We also examine the set of Ubx isoforms expressed in two isoform-specific Ubx mutant strains and analyze for the first time the effects of splicing defects on regional neural stem cell (neuroblast) identity. Our findings support the notion of specific isoforms having different effects in providing individual neuroblasts with positional identity along the anteroposterior body axis, as well as being involved in regulation of progeny cell fate.


Subject(s)
Alternative Splicing/genetics , Central Nervous System/embryology , Drosophila Proteins/genetics , Drosophila/genetics , Gene Expression Regulation, Developmental/genetics , Neurogenesis/genetics , Animals , Drosophila/embryology , Genes, Homeobox/genetics , Genes, Insect/genetics , Homeodomain Proteins/genetics , Protein Isoforms/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...