Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 44(1): 272-283, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28102950

ABSTRACT

PURPOSE: The hematopoietically active tissues of skeletal bone marrow are a prime target for computational dosimetry given potential risks of leukemia and, at higher dose levels, acute marrow toxicity. The complex three-dimensional geometry of trabecular spongiosa, however, complicates schema for dose assessment in such a way that only a few reference skeletal models have been developed to date, and which are based upon microimaging of a limited number of cadaveric bone spongiosa cores. The question then arises as to what degree of accuracy is achievable from reference skeletal dose models when applied to individual patients or specific exposed populations? METHODS: Patient variability in marrow dosimetry were quantified for three skeletal sites - the ribs, lumbar vertebrae, and cranium - for the beta-emitters 45 Ca, 153 Sm, and 90 Y, and the alpha-particle emitters 223 Ra, 219 Rn, and 215 Po, the latter two being the immediate progeny of the former. For each radionuclide and bone site, three patient parameters were altered from their values in the reference model: (1) bone size as a surrogate for patient stature, (2) marrow cellularity as a surrogate for age- or disease-related changes in marrow adiposity, and (3) the trabecular bone volume fraction as a surrogate for bone mineral density. Marrow dose variability is expressed as percent differences in the radionuclide S value given by the reference model and the patient-parameterized model. The impact of radionuclide biokinetics on marrow dosimetry was not considered. RESULTS: Variations in overall bone size play a very minor role in active marrow dose variability. Marrow cellularity is a significant factor in dose variability for active marrow self-irradiation, but it plays no role for radionuclides localized to the trabecular bone matrix. Variations in trabecular bone volume fractions impact the active marrow dose variability for short-range particle emitters 45 Ca, 223 Ra, 219 Rn, and 215 Po in the vertebrae and ribs, skeletal sites with small spongiosa proportions of trabecular bone. In the cranium, with its relative high proportion of trabecular bone, significant differences in marrow dosimetry from the reference model were noted for all radionuclides. CONCLUSIONS: Skeletal models of active marrow dosimetry should be more fully parameterized to permit closer matching to patient bone density and marrow cellularity, particularly when considering short-range particle emitters localized to either the bone trabeculae or active marrow, respectively.


Subject(s)
Bone Density/radiation effects , Bone Marrow Cells/radiation effects , Bone and Bones/anatomy & histology , Bone and Bones/cytology , Radiometry/standards , Absorption, Radiation , Bone and Bones/physiology , Bone and Bones/radiation effects , Female , Humans , Male , Organ Size
2.
Med Phys ; 44(2): 747-761, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28133749

ABSTRACT

PURPOSE: The hematopoietically active (or red) bone marrow is the target tissue assigned in skeletal dosimetry models for assessment of stochastic effects (leukemia induction) as well as tissue reactions (marrow toxicity). Active marrow, however, is in reality a surrogate tissue region for specific cell populations, namely the hematopoietic stem and progenitor cells. Present models of active marrow dosimetry implicitly assume that these cells are uniformly localized throughout the marrow spaces of trabecular spongiosa. Data from Watchman et al. and Bourke et al., however, clearly indicate that there is a substantial spatial concentration gradient of these cells with the highest concentrations localized near the bone trabeculae surfaces. The purpose of the present study was thus to explore the dosimetric implications of these spatial gradients on active marrow dosimetry. METHODS: Images of several bone sites from a 45-yr female were retagged to group active marrow voxels into 50 µm increments of marrow depth, after which electron and alpha-particle depth-dependent specific absorbed fractions were computed for four source tissues - active marrow, inactive marrow, bone trabeculae volumes, and bone trabeculae surfaces. Corresponding depth-dependent S values (dose to a target tissue per decay in a source tissue) were computed and further weighted by the relative target cell concentration. These depth-weighted radionuclide S values were systematically compared to the more traditional volume-averaged radionuclide S values of the MIRD schema for both individual bones of the skeleton and their skeletal-averaged quantities. RESULTS: For both beta-emitters and alpha-emitters localized in the active and inactive marrow, depth-weighted S values were shown to differ from volume-averaged S values by only a few percent, as dose gradients across the marrow tissues are nonexistent. For bone volume and bone surface sources of alpha-emitters and lower energy beta-emitters, when marrow dose gradients are expected, explicit consideration of target cell spatial concentration gradients are shown to significantly impact marrow dosimetry. CONCLUSIONS: For medical isotopes currently utilized for treatment of skeletal metastases, namely 153 Sm and 223 Ra, accounting for hematopoietic stem and progenitor cell concentration gradients resulted in maximum percent differences to reference skeletal-averaged S values of ~21% and 55%, respectively.


Subject(s)
Bone Marrow/radiation effects , Bone and Bones , Hematopoietic Stem Cells/radiation effects , Radiometry/methods , Absorption, Radiation , Adult , Female , Hematopoietic Stem Cells/cytology , Humans
3.
Phys Med Biol ; 59(18): 5225-42, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25144322

ABSTRACT

Substantial increases in pediatric and adult obesity in the US have prompted a major revision to the current UF/NCI (University of Florida/National Cancer Institute) family of hybrid computational phantoms to more accurately reflect current trends in larger body morphometry. A decision was made to construct the new library in a gridded fashion by height/weight without further reference to age-dependent weight/height percentiles as these become quickly outdated. At each height/weight combination, circumferential parameters were defined and used for phantom construction. All morphometric data for the new library were taken from the CDC NHANES survey data over the time period 1999-2006, the most recent reported survey period. A subset of the phantom library was then used in a CT organ dose sensitivity study to examine the degree to which body morphometry influences the magnitude of organ doses for patients that are underweight to morbidly obese in body size. Using primary and secondary morphometric parameters, grids containing 100 adult male height/weight bins, 93 adult female height/weight bins, 85 pediatric male height/weight bins and 73 pediatric female height/weight bins were constructed. These grids served as the blueprints for construction of a comprehensive library of patient-dependent phantoms containing 351 computational phantoms. At a given phantom standing height, normalized CT organ doses were shown to linearly decrease with increasing phantom BMI for pediatric males, while curvilinear decreases in organ dose were shown with increasing phantom BMI for adult females. These results suggest that one very useful application of the phantom library would be the construction of a pre-computed dose library for CT imaging as needed for patient dose-tracking.


Subject(s)
Anthropometry , Computer Simulation , Obesity, Morbid/physiopathology , Phantoms, Imaging , Radiometry/methods , Tomography, X-Ray Computed/methods , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Nutrition Surveys , Reference Standards , Young Adult
4.
Phys Med Biol ; 59(15): 4325-43, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25030913

ABSTRACT

Efforts to assess in utero radiation doses and related quantities to the developing fetus should account for the presence of the surrounding maternal tissues. Maternal tissues can provide varying levels of protection to the fetus by shielding externally-emitted radiation or, alternatively, can become sources of internally-emitted radiation following the biokinetic uptake of medically-administered radiopharmaceuticals or radionuclides located in the surrounding environment--as in the case of the European Union's SOLO project (Epidemiological Studies of Exposed Southern Urals Populations). The University of Florida had previously addressed limitations in available computational phantom representation of the developing fetus by constructing a series of hybrid computational fetal phantoms at eight different ages and three weight percentiles. Using CT image sets of pregnant patients contoured using 3D-DOCTOR(TM), the eight 50th percentile fetal phantoms from that study were systematically combined in Rhinoceros(TM) with the UF adult non-pregnant female to yield a series of reference pregnant female phantoms at fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. Deformable, non-uniform rational B-spline surfaces were utilized to alter contoured maternal anatomy in order to (1) accurately position and orient each fetus and surrounding maternal tissues and (2) match target masses of maternal soft tissue organs to reference data reported in the literature.


Subject(s)
Algorithms , Fetus/diagnostic imaging , Phantoms, Imaging , Radiometry/methods , Adult , Female , Humans , Pregnancy , Radiometry/standards , Radionuclide Imaging , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...