Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 583(11): 1785-91, 2009 Jun 05.
Article in English | MEDLINE | ID: mdl-19298816

ABSTRACT

Cluster of differentiation (CD) antigens are defined when a surface molecule found on some members of a standard panel of human cells reacts with at least one novel antibody, and there is good accompanying molecular data. Monoclonal antibodies to surface CD antigens on leukocytes have been used for flow cytometry, and more recently to construct microarrays that capture live cells. These DotScan microarrays enable the rapid and highly parallel characterization of repertoires of CD antigens whose expression patterns may be correlated with discrete leukaemia subtypes, or used to define biomarker 'signatures' for non-hematological diseases. DotScan with fluorescence multiplexing enables profiling of CD antigens for minor subsets of cells, such as colorectal cancer cells and tumour-infiltrating lymphocytes from a surgical sample.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, CD/immunology , Leukemia/immunology , Humans
2.
Biochim Biophys Acta ; 1774(9): 1173-83, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17698427

ABSTRACT

Identification of cytosolic proteins differentially expressed between types of leukemia and lymphoma may provide a molecular basis for classification and understanding their cellular properties. Two-dimensional fluorescence difference gel electrophoresis (DIGE) and mass spectrometry have been used to identify proteins that are differentially expressed in cytosolic extracts from four human leukemia and lymphoma cell lines: HL-60 (acute promyelocytic leukemia), MEC1 (B-cell chronic lymphocytic leukemia), CCRF-CEM (T-cell acute lymphoblastic leukemia) and Raji (B-cell Burkitt's lymphoma). A total of 247 differentially expressed proteins were identified between the four cell lines. Analysis of the data by principal component analysis identified 22 protein spots (17 different protein species) differentially expressed at more than a 95% variance level between these cell lines. Several of these proteins were differentially expressed in only one cell line: HL-60 (myeloperoxidase, phosphoprotein 32 family member A, ras related protein Rab-11B, protein disulfide-isomerase, ran-specific GTPase-activating protein, nucleophosmin and S-100 calcium binding protein A4), and Raji (ezrin). Several of these proteins were differentially expressed in two cell lines: Raji and MEC1 (C-1-tetrahydrofolate synthase, elongation factor 2, alpha- and beta-tubulin, transgelin-2 and stathmin). MEC1 and CCRF-CEM (gamma-enolase), HL-60 and CCRF-CEM (ubiquitin-conjugating enzyme E2 N). The differentially expressed proteins identified in these four cell lines correlate with cellular properties and provide insights into the molecular basis of these malignancies.


Subject(s)
Cytosol/metabolism , Leukemia/metabolism , Lymphoma/metabolism , Neoplasm Proteins/biosynthesis , Cell Line, Tumor , Cell Lineage , Cytoskeletal Proteins/biosynthesis , Electrophoresis, Gel, Two-Dimensional , Gene Expression Profiling , HL-60 Cells , Humans , Phosphopyruvate Hydratase/biosynthesis , Ubiquitin-Conjugating Enzymes/biosynthesis
3.
Inorg Chem ; 44(8): 2934-43, 2005 Apr 18.
Article in English | MEDLINE | ID: mdl-15819581

ABSTRACT

A new family of relatively stable Cr(V) complexes, [Cr(V)O(L)(2)](-) (LH(2) = RC(O)NHOH, R = Me, Ph, 2-HO-Ph, or HONHC(O)(CH(2))(6)), has been obtained by the reactions of hydroxamic acids with Cr(VI) in polar aprotic solvents. Similar reactions in aqueous solutions led to the formation of transient Cr(V) species. All complexes have been characterized by electron paramagnetic resonance spectroscopy and electrospray mass spectrometry. A Cr(V) complex of benzohydroxamic acid (1, R = Ph) was isolated in a pure form (as a K(+) salt) and was characterized by X-ray absorption spectroscopy and analytical techniques. Multiple-scattering analysis of X-ray absorption fine structure spectroscopic data for 1 (solid, 10 K) point to a distorted trigonal-bipyramidal structure with trans-oriented Ph groups and Cr-ligand bond lengths of 1.58 A (Cr-O), 1.88 A (Cr-O(C)), and 1.98 A (Cr-O(N)). Under ambient conditions, 1 is stable for days in aprotic solvents but decomposes within minutes in aqueous solutions (maximal stability at pH approximately 7), which leads predominantly to the formation of Cr(III) complexes. Complex 1 readily undergoes ligand-exchange reactions with biological 1,2-diols, including D-glucose and mucin, in neutral aqueous solutions. It differs from most other types of Cr(V) complexes in its biological activity, since no oxidative cleavage of plasmid DNA in vitro and no significant bacterial mutagenicity (in the TA 102 strain of Salmonella typhimurium) was observed for 1. In natural systems, stabilization of Cr(V) by hydroxamato ligands from bacterial-derived siderophores (followed by ligand-exchange reactions with more abundant carbohydrate ligands) may occur during the biological reduction of Cr(VI) in contaminated soils.


Subject(s)
Chromium/chemistry , Hydroxamic Acids/chemistry , Organometallic Compounds/chemical synthesis , Cations , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Ligands , Molecular Structure , Oxidation-Reduction , Solvents , Spectrometry, X-Ray Emission
SELECTION OF CITATIONS
SEARCH DETAIL
...