Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38496458

ABSTRACT

Zipper-interacting protein kinase (ZIPK) is a Ser/Thr protein kinase with regulatory involvement in vascular smooth muscle cell (VSMC) actin polymerization and focal adhesion assembly dynamics. ZIPK silencing can induce cytoskeletal remodeling with disassembly of actin stress fiber networks and coincident loss of focal adhesion kinase (FAK)-pY397 phosphorylation. The link between ZIPK inhibition and FAK phosphorylation is unknown, and critical interactor(s) and regulator(s) are not yet defined. In this study, we further analyzed the ZIPK-FAK relationship in VSMCs. The application of HS38, a selective ZIPK inhibitor, to coronary artery vascular smooth muscle cells (CASMCs) suppressed cell migration, myosin light chain phosphorylation (pT18&pS19) and FAK-pY397 phosphorylation as well. This was associated with the translocation of cytoplasmic FAK to the nucleus. ZIPK inhibition with HS38 was consistently found to suppress the activation of FAK and attenuate the phosphorylation of other focal adhesion protein components (i.e., pCas130, paxillin, ERK). In addition, our study showed a decrease in human cell-division cycle 14A phosphatase (CDC14A) levels with ZIPK-siRNA treatment and increased CDC14A with transient transfection of ZIPK. Proximity ligation assays (PLA) revealed CDC14A localized with ZIPK and FAK. Silencing CDC14A showed an increase of FAK-pY397 phosphorylation. Ultimately, the data presented herein strongly support a regulatory mechanism of FAK in CASMCs by a ZIPK-CDC14A partnership; ZIPK may act as a key signal integrator to control CDC14A and FAK during VSMC migration.

2.
J Proteome Res ; 23(4): 1144-1149, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38412507

ABSTRACT

Apolipoprotein E (apoE), a polymorphic plasma protein, plays a pivotal role in lipid transportation. The human apoE gene possesses three major alleles (ε2, ε3, and ε4), which differ by single amino acid (cysteine to arginine) substitutions. The ε4 allele represents the primary genetic risk factor for Alzheimer's disease (AD), whereas the ε2 allele protects against the disease. Knowledge of a patient's apoE genotype has high diagnostic value. A recent study has introduced an LC-MRM-MS-based proteomic approach for apoE isoform genotyping using stable isotope-labeled peptide internal standards (SIS). Here, our goal was to develop a simplified LC-MRM-MS assay for identifying apoE genotypes in plasma samples, eliminating the need for the use of SIS peptides. To determine the apoE genotypes, we monitored the chromatographic peak area ratios of isoform-specific peptides relative to a peptide that is common to all apoE isoforms. The assay results correlated well with the standard TaqMan allelic discrimination assay, and we observed a concordance between the two methods for all but three out of 172 samples. DNA sequencing of these three samples has confirmed that the results of the LC-MRM-MS method were correct. Thus, our simplified UPLC-MRM-MS assay is a feasible and reliable method for identifying apoE genotypes without using SIS internal standard peptides. The approach can be seamlessly incorporated into existing quantitative proteomics assays and kits, providing additional valuable apoE genotype information. The principle of using signal ratios of the protein isoform-specific peptides to the peptide common for all of the protein isoforms has the potential to be used for protein isoform determination in general.


Subject(s)
Alzheimer Disease , Proteomics , Humans , Apolipoproteins E/genetics , Genotype , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alleles , Protein Isoforms/genetics , Peptides/genetics
3.
Cells ; 13(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38334610

ABSTRACT

Brain tumors represent a heterogeneous group of neoplasms characterized by a high degree of aggressiveness and a poor prognosis. Despite recent therapeutic advances, the treatment of brain tumors, including glioblastoma (GBM), an aggressive primary brain tumor associated with poor prognosis and resistance to therapy, remains a significant challenge. Receptor tyrosine kinases (RTKs) are critical during development and in adulthood. Dysregulation of RTKs through activating mutations and gene amplification contributes to many human cancers and provides attractive therapeutic targets for treatment. Under physiological conditions, the Met RTK, the hepatocyte growth factor/scatter factor (HGF/SF) receptor, promotes fundamental signaling cascades that modulate epithelial-to-mesenchymal transition (EMT) involved in tissue repair and embryogenesis. In cancer, increased Met activity promotes tumor growth and metastasis by providing signals for proliferation, survival, and migration/invasion. Recent clinical genomic studies have unveiled multiple mechanisms by which MET is genetically altered in GBM, including focal amplification, chromosomal rearrangements generating gene fusions, and a splicing variant mutation (exon 14 skipping, METex14del). Notably, MET overexpression contributes to chemotherapy resistance in GBM by promoting the survival of cancer stem-like cells. This is linked to distinctive Met-induced pathways, such as the upregulation of DNA repair mechanisms, which can protect tumor cells from the cytotoxic effects of chemotherapy. The development of MET-targeted therapies represents a major step forward in the treatment of brain tumours. Preclinical studies have shown that MET-targeted therapies (monoclonal antibodies or small molecule inhibitors) can suppress growth and invasion, enhancing the efficacy of conventional therapies. Early-phase clinical trials have demonstrated promising results with MET-targeted therapies in improving overall survival for patients with recurrent GBM. However, challenges remain, including the need for patient stratification, the optimization of treatment regimens, and the identification of mechanisms of resistance. This review aims to highlight the current understanding of mechanisms underlying MET dysregulation in GBM. In addition, it will focus on the ongoing preclinical and clinical assessment of therapies targeting MET dysregulation in GBM.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Humans , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Signal Transduction , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Antineoplastic Agents/pharmacology
4.
Exp Physiol ; 108(7): 986-997, 2023 07.
Article in English | MEDLINE | ID: mdl-37084168

ABSTRACT

NEW FINDINGS: What is the central question of this study? DAPK3 contributes to the Ca2+ -sensitization of vascular smooth muscle contraction: does this protein kinase participate in the myogenic response of cerebral arteries? What is the main finding and its importance? Small molecule inhibitors of DAPK3 effectively block the myogenic responses of cerebral arteries. HS38-dependent changes to vessel constriction occur independent of LC20 phosphorylation, and therefore DAPK3 appears to operate via the actin cytoskeleton. A role for DAPK3 in the myogenic response was not previously reported, and the results support a potential new therapeutic target in the cerebrovascular system. ABSTRACT: The vascular smooth muscle (VSM) of resistance blood vessels is a target of intrinsic autoregulatory responses to increased intraluminal pressure, the myogenic response. In the brain, the myogenic reactivity of cerebral arteries is critical to homeostatic blood flow regulation. Here we provide the first evidence to link the death-associated protein kinase 3 (DAPK3) to the myogenic response of rat and human cerebral arteries. DAPK3 is a Ser/Thr kinase involved in Ca2+ -sensitization mechanisms of smooth muscle contraction. Ex vivo administration of a specific DAPK3 inhibitor (i.e., HS38) could attenuate vessel constrictions invoked by serotonin as well as intraluminal pressure elevation. The HS38-dependent dilatation was not associated with any change in myosin light chain (LC20) phosphorylation. The results suggest that DAPK3 does not regulate Ca2+ sensitization pathways during the myogenic response of cerebral vessels but rather operates to control the actin cytoskeleton. A slow return of myogenic tone was observed during the sustained ex vivo exposure of cerebral arteries to HS38. Recovery of tone was associated with greater LC20 phosphorylation that suggests intrinsic signalling compensation in response to attenuation of DAPK3 activity. Additional experiments with VSM cells revealed HS38- and siDAPK-dependent effects on the actin cytoskeleton and focal adhesion kinase phosphorylation status. The translational importance of DAPK3 to the human cerebral vasculature was noted, with robust expression of the protein kinase and significant HS38-dependent attenuation of myogenic reactivity found for human pial vessels.


Subject(s)
Cerebral Arteries , Vasoconstriction , Animals , Humans , Rats , Cerebral Arteries/metabolism , Death-Associated Protein Kinases/metabolism , Protein Kinases , Vascular Resistance , Vasoconstriction/physiology
5.
Cell Mol Life Sci ; 79(3): 178, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35249128

ABSTRACT

Receptor tyrosine kinases (RTKs) are recognized as targets of precision medicine in human cancer upon their gene amplification or constitutive activation, resulting in increased downstream signal complexity including heterotypic crosstalk with other RTKs. The Met RTK exhibits such reciprocal crosstalk with several members of the human EGFR (HER) family of RTKs when amplified in cancer cells. We show that Met signaling converges on HER3-tyrosine phosphorylation across a panel of seven MET-amplified cancer cell lines and that HER3 is required for cancer cell expansion and oncogenic capacity in vitro and in vivo. Gene expression analysis of HER3-depleted cells identified MPZL3, encoding a single-pass transmembrane protein, as HER3-dependent effector in multiple MET-amplified cancer cell lines. MPZL3 interacts with HER3 and MPZL3 loss phenocopies HER3 loss in MET-amplified cells, while MPZL3 overexpression can partially rescue proliferation upon HER3 depletion. Together, these data support an oncogenic role for a HER3-MPZL3 axis in MET-amplified cancers.


Subject(s)
Membrane Proteins/metabolism , Proto-Oncogene Proteins c-met/metabolism , Receptor, ErbB-3/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Mice , Mice, Inbred NOD , Microsatellite Instability , Phosphorylation , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-met/genetics , RNA Interference , RNA, Small Interfering/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/genetics , Signal Transduction/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Transplantation, Heterologous
6.
Cancer Biol Ther ; 22(4): 333-344, 2021 04 03.
Article in English | MEDLINE | ID: mdl-33978549

ABSTRACT

Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and a catalytic subunit of the polycomb repressive complex 2 (PRC2) that catalyzes the mono-, di-, and tri-methylation of histone H3 at Lys 27 (H3K27me3) to facilitate chromatin-remodeling and gene-silencing functions. Previous reports showed a significant association of EZH2 aberrations in pediatric cancers, such as soft tissue sarcomas and glioblastoma. Recent reports in human subjects and animal models have also suggested a central role of EZH2 in the induction and progression of acute myeloid leukemia. In this study, we aimed to investigate the molecular status of EZH in cell lines derived from distinct pediatric leukemia to assess the efficacy of targeting EZH2 to suppress cancer cell survival and proliferation. Our results showed that EZH2 protein is overexpressed in the pediatric monocytic cell-line THP-1, but not in other leukemia-derived cell lines MV4;11 and SEM. Screening a panel of methyltransferase inhibitors revealed that three inhibitors; GSK126, UNC1999 and EPZ-5687 are the most potent inhibitors that suppressed EZH2 activity selectively on lysine 27 which resulted in increased apoptosis and inhibition of AKT and ERK protein phosphorylation in THP-1 cells. Our data demonstrated a significant increase in apoptosis in cells treated with drug combination (EZH2i and selinexor) compared to EZH2i inhibitors alone. Taken together, our data provide initial evidence that targeting EZH2 is a promising therapeutic strategy for the treatment of subtypes of pediatric AML. Also, combining EZH2 inhibitors with selinexor may increase the treatment efficacy in these patients.


Subject(s)
Histones , Leukemia, Monocytic, Acute , Animals , Cell Proliferation , Child , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones/metabolism , Humans , Methylation
7.
ACS Appl Bio Mater ; 3(11): 7898-7907, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-35019530

ABSTRACT

A scalable method for the assembly of oriented bacterial cellulose (BC) films is presented based on using wrinkled thin silicone substrates of meter-square size as templates during biotechnological syntheses of BC. Control samples, including flat templated and template-free bacterial cellulose, along with the oriented BC, are morphologically characterized using scanning electron microscopy (SEM). Multiple functional properties including wettability, birefringence, mechanical strength, crystallinity, water retention, thermal stability, etc., are being characterized for the BC samples, where the wrinkling-induced in situ BC alignment not only significantly improved material mechanical properties (both strength and toughness) but also endowed unique material surface characteristics such as wettability, crystallinity, and thermal stability. Owing to the enhanced properties observed, potential applications of wrinkle templated BC in printing and cell culture are being demonstrated as a proof of concept, which renders their approach promising for various biomedical and packaging applications.

8.
J Cancer Res Clin Oncol ; 145(6): 1461-1469, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31006845

ABSTRACT

BACKGROUND: Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children. Pathogenesis of RMS is associated with aggressive growth pattern and increased risk of morbidity and mortality. There are two main subtypes or RMS: embryonal and alveolar. The embryonal type is characterized by distinct molecular aberrations, including alterations in the activity of certain protein kinases. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that plays a vital role in focal adhesion (FA) assembly to promote cytoskeleton dynamics and regulation of cell motility. It is regulated by multiple phosphorylation sites: tyrosine 397, Tyr 576/577, and Tyr 925. Tyrosine 397 is the autophosphorylation site that regulates FAK localization at the cell periphery to facilitate the assembly and formation of the FA complex. The kinase activity of FAK is mediated by the phosphorylation of Tyr 576/577 within the kinase domain activation loop. Aberrations of FAK phosphorylation have been linked to the pathogenesis of different types of cancers. In this regard, pY397 upregulation is linked to increase ERMS cell motility, invasion, and tumorigenesis. METHODS: In this study, we have used an established human embryonal muscle rhabdomyosarcoma cell line RD as a model to examine FAK phosphorylation profiles to characterize its role in the pathogenies of RMS. RESULTS: Our findings revealed a significant increase of FAK phosphorylation at pY397 in RD cells compared to control cells (hTERT). On the other hand, Tyr 576/577 phosphorylation levels in RD cells displayed a pronounced reduction. Our data showed that Y925 residue exhibited no detectable change. The in vitro analysis showed that the FAK inhibitor, PF-562271 led to G1 cell-cycle arrest induced cell death (IC50, ~ 12 µM) compared to controls. Importantly, immunostaining analyses displayed a noticeable reduction of Y397 phosphorylation following PF-562271 treatment. Our data also showed that PF-562271 suppressed RD cell migration in a dose-dependent manner associated with a reduction in Y397 phosphorylation. CONCLUSIONS: The data presented herein indicate that targeting FAK phosphorylation at distinct sites is a promising strategy in future treatment approaches for defined subgroups of rhabdomyosarcoma.


Subject(s)
Focal Adhesion Kinase 1/metabolism , Rhabdomyosarcoma, Embryonal/enzymology , Rhabdomyosarcoma, Embryonal/pathology , Blotting, Western , Cell Line, Tumor , Cell Movement/physiology , Cell Survival/physiology , Child , Enzyme Inhibitors/pharmacology , Female , Focal Adhesion Kinase 1/antagonists & inhibitors , Humans , Immunohistochemistry , Indoles/pharmacology , Phosphorylation , Rhabdomyosarcoma, Embryonal/drug therapy , Sulfonamides/pharmacology
9.
Curr Cancer Drug Targets ; 19(10): 828-837, 2019.
Article in English | MEDLINE | ID: mdl-30914027

ABSTRACT

BACKGROUND: GDC-0980 is a selective small molecule inhibitor of class I PI3K and mTOR pathway with a potent anti-proliferative activity. OBJECTIVE: We set out to evaluate the efficacy of GDC-0980, in pre-clinical studies, against pediatric leukemia cells. METHODS: The anti-neoplastic activity of GDC-0980 was evaluated in vitro using five different pediatric leukemia cells. RESULTS: Our data show that GDC-0980 significantly inhibited the proliferation of leukemia cell lines, KOPN8 (IC50, 532 nM), SEM (IC50,720 nM), MOLM-13 (IC50,346 nM), MV4;11 (IC50,199 nM), and TIB-202 (IC50, 848 nM), compared to normal control cells (1.23 µM). This antiproliferative activity was associated with activation of cellular apoptotic mechanism characterized by a decrease in Bcl-2 protein phosphorylation and enhanced PARP cleavage. Western blot analyses of GDC-0980 treated cells also showed decreased phosphorylation levels of mTOR, Akt and S6, but not ERK1/2. Notably, FLT3 phosphorylation was decreased in Molm-13 and MV4;11 cells following the application of GDC-0980. We further examined cellular viability of GDC-0980-treated primary leukemia cells isolated from pediatric leukemia patients. This study revealed a potential therapeutic effect of GDC-0980 on two ALL patients (IC50's, 1.23 and 0.625 µM, respectively). Drug combination analyses of GDC-0980 demonstrated a synergistic activity with the MEK inhibitor Cobimetinib (MV4-11; 11, CI, 0.25, SEM, CI, 0.32, and TIB-202, CI, 0.55) and the targeted FLT3 inhibitor, Crenolanib (MV4-11; 11, CI, 0.25, SEM, CI, 0.7, and TIB-202, CI, 0.42). CONCLUSION: These findings provide initial proof-of-concept data and rationale for further investigation of GDC-0980 in selected subgroups of pediatric leukemia patients.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Pyrimidines/pharmacology , Signal Transduction , TOR Serine-Threonine Kinases/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/metabolism , Cell Line, Tumor , Cell Survival , Child , Humans , Leukemia, Myeloid, Acute/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics
10.
Cancer Biother Radiopharm ; 34(4): 252-257, 2019 May.
Article in English | MEDLINE | ID: mdl-30724592

ABSTRACT

Background: Neuroblastoma (NB) is one of the most aggressive and common solid tumors in pediatrics. Development of effective new therapeutics for NB is in progress to help reduce mortality and morbidity of the disease, particularly in relapsed patients. The tumor suppressor protein p53 plays a critical role in multiple signaling pathways to maintain cellular hemostasis. Dysregulation of p53 protein and/or molecular aberrations have been associated with multiple human malignancies. p53 stability and protein activity is negatively regulated by the E3 ubiquitin ligase (MDM2). Thus, targeting p53-MDM2 protein-protein interaction is a feasible and promising therapeutic strategy to restore the physiological function of p53 in cancer cells. RG7112 is a highly potent and selective small molecule inhibitor, which target a unique structure located within p53 binding motif of MDM2. Methods: The efficacy of RG7112 in vitro using NB cell lines was examined. Two wild-type (WT)-p53 NB cell lines IMR5 and LAN-5, a mutant p53 cell line SK-N-BE(2), and a WT-p53/p14 deleted cell line SH-EP were employed. Results: Data showed that RG7112 significantly reduced cellular viability of IMR5 (IC50, 562 nM) and LAN-5 (IC50, 430 nM), but not SK-N-BE(2) and SH-EP cells. Further, RG7112 restores p53 and p21 protein levels in IMR5 and LAN-5 in a dose-dependent manner. RG7112 induces cell cycle arresting (60% G1 arresting) in WT-p53 cells (IMR5), but no pronounced effect observed in SK-N-BE(2). In this study, 15 different drugs in combination with RG7112 in IMR5 cell line and identified venetoclax (Bcl-2/Bcl-xL inhibitor) as a promising candidate were evaluated. Conclusions: Taken together, these findings provide initial proof-of-concept data for further investigations of RG7112 in selected subgroups of NB patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Imidazolines/pharmacology , Neuroblastoma/drug therapy , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Amino Acid Motifs/drug effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Drug Synergism , Humans , Imidazolines/therapeutic use , Inhibitory Concentration 50 , Neuroblastoma/genetics , Neuroblastoma/pathology , Protein Binding/drug effects , Protein Binding/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Signal Transduction/drug effects , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Tumor Suppressor Protein p53/genetics
11.
Proteins ; 86(11): 1211-1217, 2018 11.
Article in English | MEDLINE | ID: mdl-30381843

ABSTRACT

Zipper-interacting protein kinase (ZIPK) is a Ser/Thr kinase that mediates a variety of cellular functions. Analogue-sensitive kinase technology was applied to the study of ZIPK signaling in coronary artery smooth muscle cells. ZIPK was engineered in the ATP-binding pocket by substitution of a bulky gatekeeper amino acid (Leu93) with glycine. Cell-permeable derivatives of pyrazolo[3,4-d]pyrimidine provided effective inhibition of L93G-ZIPK (1NM-PP1, IC50 , 1.0 µM; 3MB-PP1, IC50 , 2.0 µM; and 1NA-PP1, IC50 , 8.6 µM) but only 3MB-PP1 had inhibitory potential (IC50 > 10 µM) toward wild-type ZIPK. Each of the compounds also attenuated Rho-associated coiled-coil containing protein kinase (ROCK) activity under experimental conditions found to be optimal for inhibition of L93G-ZIPK. In silico molecular simulations showed effective docking of 1NM-PP1 into ZIPK following mutational enlargement of the ATP-binding pocket. Molecular simulation of 1NM-PP1 docking in the ATP-binding pocket of ROCK was also completed. The 1NM-PP1 inhibitor was selected as the optimal compound for selective chemical genetics in smooth muscle cells since it displayed the highest potency for L93G-ZIPK relative to WT-ZIPK and the weakest off-target effects against other relevant kinases. Finally, the 1NM-PP1 and L93G-ZIPK pairing was effectively applied in vascular smooth muscle cells to manipulate the phosphorylation level of LC20, a previously defined target of ZIPK.


Subject(s)
Adenosine Triphosphate/metabolism , Death-Associated Protein Kinases/metabolism , Signal Transduction , Binding Sites/drug effects , Cell Line , Coronary Vessels/cytology , Coronary Vessels/metabolism , Death-Associated Protein Kinases/antagonists & inhibitors , Death-Associated Protein Kinases/chemistry , Death-Associated Protein Kinases/genetics , Humans , Molecular Docking Simulation , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Protein Engineering , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Transfection
12.
Sci Rep ; 6: 32118, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27573465

ABSTRACT

The selectivity of (4Z)-2-(4-chloro-3-nitrophenyl)-4-(pyridin-3-ylmethylidene)-1,3-oxazol-5-one (DI) for zipper-interacting protein kinase (ZIPK) was previously described by in silico computational modeling, screening a large panel of kinases, and determining the inhibition efficacy. Our assessment of DI revealed another target, the Rho-associated coiled-coil-containing protein kinase 2 (ROCKII). In vitro studies showed DI to be a competitive inhibitor of ROCKII (Ki, 132 nM with respect to ATP). This finding was supported by in silico molecular surface docking of DI with the ROCKII ATP-binding pocket. Time course analysis of myosin regulatory light chain (LC20) phosphorylation catalyzed by ROCKII in vitro revealed a significant decrease upon treatment with DI. ROCKII signaling was investigated in situ in human coronary artery vascular smooth muscle cells (CASMCs). ROCKII down-regulation using siRNA revealed several potential substrates involved in smooth muscle contraction (e.g., LC20, Par-4, MYPT1) and actin cytoskeletal dynamics (cofilin). The application of DI to CASMCs attenuated LC20, Par-4, LIMK, and cofilin phosphorylations. Notably, cofilin phosphorylation was not significantly decreased with a novel ZIPK selective inhibitor (HS-38). In addition, CASMCs treated with DI underwent cytoskeletal changes that were associated with diminution of cofilin phosphorylation. We conclude that DI is not selective for ZIPK and is a potent inhibitor of ROCKII.


Subject(s)
Coronary Vessels/enzymology , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Oxazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , rho-Associated Kinases/antagonists & inhibitors , Coronary Vessels/cytology , Humans , Molecular Docking Simulation , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Oxazoles/chemistry , Protein Kinase Inhibitors/chemistry , rho-Associated Kinases/chemistry , rho-Associated Kinases/metabolism
13.
Mol Pharmacol ; 89(1): 105-17, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26464323

ABSTRACT

A novel inhibitor of zipper-interacting protein kinase (ZIPK) was used to examine the involvement of ZIPK in the regulation of smooth muscle contraction. Pretreatment of de-endothelialized rat caudal arterial smooth muscle strips with the pyrazolo[3,4-d]pyrimidinone inhibitor 2-((1-(3-chlorophenyl)-4-oxo-4,5-dihydro-1H-pyrazolo [3,4-d]-pyrimidin-6-yl)thio)propanamide (HS38) decreased the velocity of contraction (time to reach half-maximal force) induced by the phosphatase inhibitor calyculin A in the presence of Ca(2+) without affecting maximal force development. This effect was reversed following washout of HS38 and correlated with a reduction in the rate of phosphorylation of myosin 20-kDa regulatory light chains (LC20) but not of protein kinase C-potentiated inhibitory protein for myosin phosphatase of 17 kDa (CPI-17), prostate apoptosis response-4, or myosin phosphatase-targeting subunit 1 (MYPT1), all of which have been implicated in the regulation of vascular contractility. A structural analog of HS38, with inhibitory activity toward proviral integrations of Moloney (PIM) virus 3 kinase but not ZIPK, had no effect on calyculin A-induced contraction or protein phosphorylations. We conclude that a pool of constitutively active ZIPK is involved in regulation of vascular smooth muscle contraction through direct phosphorylation of LC20 upon inhibition of myosin light chain phosphatase activity. HS38 also significantly attenuated both phasic and tonic contractile responses elicited by phenylephrine, angiotensin II, endothelin-1, U46619, and K(+)-induced membrane depolarization in the presence of Ca(2+), which correlated with inhibition of phosphorylation of LC20, MYPT1, and CPI-17. These effects of HS38 suggest that ZIPK also lies downstream from G protein-coupled receptors that signal through both Gα12/13 and Gαq/11.


Subject(s)
Calcium/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/metabolism , Muscle, Smooth, Vascular/enzymology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Animals , Male , Muscle, Smooth, Vascular/drug effects , Organ Culture Techniques , Pyrazoles/chemistry , Pyrimidines/chemistry , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Rats , Rats, Sprague-Dawley
14.
Asian Pac J Cancer Prev ; 15(1): 75-84, 2014.
Article in English | MEDLINE | ID: mdl-24528084

ABSTRACT

Aberrant DNA methylation of tumor suppressor genes has been reported in all major types of leukemia with potential involvement in the inactivation of regulatory cell cycle and apoptosis genes. However, most of the previous reports did not show the extent of concurrent methylation of multiple genes in the four leukemia types. Here, we analyzed six key genes (p14, p15, p16, p53, DAPK and TMS1) for DNA methylation using methylation specific PCR to analyze peripheral blood of 78 leukemia patients (24 CML, 25 CLL, 12 AML, and 17 ALL) and 24 healthy volunteers. In CML, methylation was detected for p15 (11%), p16 (9%), p53 (23%) and DAPK (23%), in CLL, p14 (25%), p15 (19%), p16 (12%), p53 (17%) and DAPK (36%), in AML, p14 (8%), p15 (45%), p53 (9%) and DAPK (17%) and in ALL, p15 (14%), p16 (8%), and p53 (8%). This study highlighted an essential role of DAPK methylation in chronic leukemia in contrast to p15 methylation in the acute cases, whereas TMS1 hypermethylation was absent in all cases. Furthermore, hypermethylation of multiple genes per patient was observed, with obvious selectiveness in the 9p21 chromosomal region genes (p14, p15 and p16). Interestingly, methylation of p15 increased the risk of methylation in p53, and vice versa, by five folds (p=0.03) indicating possible synergistic epigenetic disruption of different phases of the cell cycle or between the cell cycle and apoptosis. The investigation of multiple relationships between methylated genes might shed light on tumor specific inactivation of the cell cycle and apoptotic pathways.


Subject(s)
DNA Methylation , Leukemia/genetics , Adolescent , Adult , Aged , Apoptosis/genetics , CARD Signaling Adaptor Proteins , Cell Cycle/genetics , Child , Child, Preschool , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cytoskeletal Proteins/genetics , Death-Associated Protein Kinases/genetics , Female , Genes, p16 , Genes, p53 , Humans , Leukemia/blood , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/genetics , Male , Middle Aged , Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Tumor Suppressor Protein p14ARF/genetics , Tumor Suppressor Protein p53/genetics , Young Adult
15.
Arch Biochem Biophys ; 535(1): 84-90, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23219599

ABSTRACT

The protein prostate-apoptosis response (Par)-4 has been implicated in the regulation of smooth muscle contraction, based largely on studies with the A7r5 cell line. A mechanism has been proposed whereby Par-4 binding to MYPT1 (the myosin-targeting subunit of myosin light chain phosphatase, MLCP) blocks access of zipper-interacting protein kinase (ZIPK) to Thr697 and Thr855 of MYPT1, whose phosphorylation is associated with MLCP inhibition. Phosphorylation of Par-4 at Thr155 disrupts its interaction with MYPT1, exposing the sites of phosphorylation in MYPT1 and leading to MLCP inhibition and contraction. We tested this "padlock" hypothesis in a well-characterized vascular smooth muscle system, the rat caudal artery. Par-4 was retained in Triton-skinned tissue, suggesting a tight association with the contractile machinery, and indeed Par-4 co-immunoprecipitated with MYPT1. Treatment of Triton-skinned tissue with the phosphatase inhibitor microcystin (MC) evoked phosphorylation of Par-4 at Thr155, but did not induce its dissociation from the contractile machinery. Furthermore, analysis of the time courses of MC-induced phosphorylation of MYPT1 and Par-4 revealed that MYPT1 phosphorylation at Thr697 or Thr855 preceded Par-4 phosphorylation. Par-4 phosphorylation was inhibited by the non-selective kinase inhibitor staurosporine, but not by inhibitors of ZIPK, Rho-associated kinase or protein kinase C. In addition, Par-4 phosphorylation did not occur upon addition of constitutively-active ZIPK to skinned tissue. We conclude that phosphorylation of Par-4 does not regulate contraction of this vascular smooth muscle tissue by inducing dissociation of Par-4 from MYPT1 to allow phosphorylation of MYPT1 and inhibition of MLCP.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Muscle, Smooth, Vascular/metabolism , Protein Phosphatase 1/metabolism , Amides/pharmacology , Animals , Apoptosis Regulatory Proteins/antagonists & inhibitors , Arteries/drug effects , Arteries/metabolism , Blotting, Western , Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/metabolism , Death-Associated Protein Kinases , Immunoprecipitation , Indoles/pharmacology , Male , Maleimides/pharmacology , Microcystins/pharmacology , Muscle Contraction , Muscle, Smooth, Vascular/drug effects , Octoxynol/metabolism , Phosphorylation , Protein Binding , Protein Phosphatase 1/genetics , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology , Staurosporine/pharmacology , Threonine/metabolism , Time Factors , rho-Associated Kinases/antagonists & inhibitors
16.
Cancer Epidemiol ; 34(6): 724-32, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20542753

ABSTRACT

Bladder cancer accounts for nearly 5% of all newly diagnosed cancers in Jordan, with a much higher frequency in males. Recent studies have shown that activating mutations in FGFR3 are the most common findings in non-invasive low grade bladder tumors. In this study, we, retrospectively, investigated a cohort of 121 bladder cancer patients with various grades and stages of the tumor for molecular changes in FGFR3. Overexpression of FGFR3 was observed in 49%, 34%, 15%, and 2% of pTa, pT1, pT2, and pT3 cases, respectively. Further, FGFR3 expression was positive in 45%, 26%, and 30% of G1, G2 and G3 cases, respectively. Mutational analysis of exons 7, 10 and 15 of FGFR3 identified four previously reported mutations, namely R248C (n=4; 10%), S249C (n=23; 59%), Y375C (n=7; 18%), G382R (n=4; 10%), and one novel mutation, G382E (n=1; 3%). Our results indicate that both mutations and overexpression of FGFR3 are correlated together, and are more prevalent in early stage (pTa and pT1) and low grade (G1 and G2) bladder tumors. Survival analysis showed no contribution of changes in FGFR3 on the patient's survival. Multivariate Cox proportional hazards model analysis of overall survival for the following variables: age, gender, stage and grade of tumor, and FGFR3 (expression and mutation) revealed that age, stage and grade of tumor are independent predictors of overall survival in patients with bladder cancer. Our work is the first to address the molecular status of FGFR3 in Jordanian patients with bladder cancer, and provides further support for FGFR3 as a key player in the initiation of bladder tumors.


Subject(s)
Gene Expression Regulation, Neoplastic , Receptor, Fibroblast Growth Factor, Type 3/genetics , Urinary Bladder Neoplasms/genetics , Adult , Age Factors , Aged , Aged, 80 and over , Humans , Jordan , Male , Middle Aged , Mutation , Neoplasm Grading , Neoplasm Staging , Prognosis , Proportional Hazards Models , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Retrospective Studies , Survival Analysis , Urinary Bladder Neoplasms/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...