Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Adv Sci (Weinh) ; 11(15): e2306000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38356246

ABSTRACT

A key goal for implanted medical devices is that they do not elicit a detrimental immune response. Macrophages play critical roles in the modulation of the host immune response and are the cells responsible for persistent inflammatory reactions to implanted biomaterials. Two novel immune-instructive polymers that stimulate pro- or anti-inflammatory responses from macrophages in vitro are investigated. These also modulate in vivo foreign body responses (FBR) when implanted subcutaneously in mice. Immunofluorescent staining of tissue abutting the polymer reveals responses consistent with pro- or anti-inflammatory responses previously described for these polymers. Three Dimensional OrbiTrap Secondary Ion Mass Spectrometry (3D OrbiSIMS) analysis to spatially characterize the metabolites in the tissue surrounding the implant, providing molecular histology insight into the metabolite response in the host is applied. For the pro-inflammatory polymer, monoacylglycerols (MG) and diacylglycerols (DG) are observed at increased intensity, while for the anti-inflammatory coating, the number of phospholipid species detected decreased, and pyridine and pyrimidine levels are elevated. Small molecule signatures from single-cell studies of M2 macrophages in vitro correlate with the in vivo observations, suggesting potential for prediction. Metabolite characterization by the 3D OrbiSIMS is shown to provide insight into the mechanism of bio-instructive materials as medical devices and to inform on the FBR to biomaterials.


Subject(s)
Biocompatible Materials , Foreign-Body Reaction , Mice , Animals , Biocompatible Materials/chemistry , Polymers , Anti-Inflammatory Agents , Lipids
2.
Bio Protoc ; 14(4): e4939, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405080

ABSTRACT

Biomaterials are designed to interact with biological systems to replace, support, enhance, or monitor their function. However, there are challenges associated with traditional biomaterials' development due to the lack of underlying theory governing cell response to materials' chemistry. This leads to the time-consuming process of testing different materials plus the adverse reactions in the body such as cytotoxicity and foreign body response. High-throughput screening (HTS) offers a solution to these challenges by enabling rapid and simultaneous testing of a large number of materials to determine their bio-interactions and biocompatibility. Secreted proteins regulate many physiological functions and determine the success of implanted biomaterials through directing cell behaviour. However, the majority of biomaterials' HTS platforms are suitable for microscopic analyses of cell behaviour and not for investigating non-adherent cells or measuring cell secretions. Here, we describe a multi-well platform adaptable to robotic printing of polymers and suitable for secretome profiling of both adherent and non-adherent cells. We detail the platform's development steps, encompassing the preparation of individual cell culture chambers, polymer printing, and the culture environment, as well as examples to demonstrate surface chemical characterisation and biological assessments of secreted mediators. Such platforms will no doubt facilitate the discovery of novel biomaterials and broaden their scope by adapting wider arrays of cell types and incorporating assessments of both secretome and cell-bound interactions. Key features • Detailed protocols for preparation of substrate for contact printing of acrylate-based polymers including O2 plasma etching, functionalisation process, and Poly(2-hydroxyethyl methacrylate) (pHEMA) dip coating. • Preparations of 7 mm × 7 mm polymers employing pin printing system. • Provision of confined area for each polymer using ProPlate® multi-well chambers. • Compatibility of this platform was validated using adherent cells [primary human monocyte-derived macrophages (MDMs)) and non-adherent cells (primary human monocyte-derived dendritic cells (moDCs)]. • Examples of the adaptability of the platform for secretome analysis including five different cytokines using enzyme-linked immunosorbent assay (ELISA, DuoSet®). Graphical overview.

3.
Int J Mol Sci ; 24(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37958979

ABSTRACT

Bacterial contamination during space missions is problematic for human health and damages filters and other vital support systems. Staphylococcus aureus is both a human commensal and an opportunistic pathogen that colonizes human tissues and causes acute and chronic infections. Virulence and colonization factors are positively and negatively regulated, respectively, by bacterial cell-to-cell communication (quorum sensing) via the agr (accessory gene regulator) system. When cultured under low-shear modelled microgravity conditions (LSMMG), S. aureus has been reported to maintain a colonization rather than a pathogenic phenotype. Here, we show that the modulation of agr expression via reduced production of autoinducing peptide (AIP) signal molecules was responsible for this behavior. In an LSMMG environment, the S. aureus strains JE2 (methicillin-resistant) and SH1000 (methicillin-sensitive) both exhibited reduced cytotoxicity towards the human leukemia monocytic cell line (THP-1) and increased fibronectin binding. Using S. aureus agrP3::lux reporter gene fusions and mass spectrometry to quantify the AIP concentrations, the activation of agr, which depends on the binding of AIP to the transcriptional regulator AgrC, was delayed in the strains with an intact autoinducible agr system. This was because AIP production was reduced under these growth conditions compared with the ground controls. Under LSMMG, S. aureus agrP3::lux reporter strains that cannot produce endogenous AIPs still responded to exogenous AIPs. Provision of exogenous AIPs to S. aureus USA300 during microgravity culture restored the cytotoxicity of culture supernatants for the THP-1 cells. These data suggest that microgravity does not affect AgrC-AIP interactions but more likely the generation of AIPs.


Subject(s)
Staphylococcal Infections , Weightlessness , Humans , Virulence Factors/genetics , Virulence Factors/metabolism , Staphylococcus aureus/metabolism , Protein Kinases/metabolism , Quorum Sensing/genetics , Down-Regulation , Peptides/metabolism , Bacterial Proteins/metabolism
4.
Bio Protoc ; 13(15): e4727, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37575382

ABSTRACT

The Three-dimensional OrbiTrap Secondary Ion Mass Spectrometry (3D OrbiSIMS) is a secondary ion mass spectrometry instrument, a combination of a Time of Flight (ToF) instrument with an Orbitrap analyzer. The 3D OrbiSIMS technique is a powerful tool for metabolic profiling in biological samples. This can be achieved at subcellular spatial resolution, high sensitivity, and high mass-resolving power coupled with MS/MS analysis. Characterizing the metabolic signature of macrophage subsets within tissue sections offers great potential to understand the response of the human immune system to implanted biomaterials. Here, we describe a protocol for direct analysis of individual cells after in vitro differentiation of naïve monocytes into M1 and M2 phenotypes using cytokines. As a first step in vivo, we investigate explanted silicon catheter sections as a medical device in a rodent model of foreign body response. Protocols are presented to allow the host response to different immune instructive materials to be compared. The first demonstration of this capability illustrates the great potential of direct cell and tissue section analysis for in situ metabolite profiling to probe functional phenotypes using molecular signatures. Details of the in vitro cell approach, materials, sample preparation, and explant handling are presented, in addition to the data acquisition approaches and the data analysis pipelines required to achieve useful interpretation of these complex spectra. This method is useful for in situ characterization of both in vitro single cells and ex vivo tissue sections. This will aid the understanding of the immune response to medical implants by informing the design of immune-instructive biomaterials with positive interactions. It can also be used to investigate a broad range of other clinically relevant therapeutics and immune dysregulations. Graphical overview.

5.
Build Environ ; 240: 110422, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37251109

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2, the virus that causes the coronavirus disease (COVID)-19, is primarily transmitted through respiratory droplets which linger in enclosed spaces, often exacerbated by HVAC systems. Although research to improve HVAC handling of SARS-CoV-2 is progressing, currently installed HVAC systems cause problems because they recirculate air and use ineffective filters against virus. This paper details the process of developing a novel method of eliminating air pollutants and suspended pathogens in enclosed spaces using Photocatalytic Oxidation (PCO) technology. It has been previously employed to remove organic contaminants and compounds from air streams using the irradiation of titanium dioxide (TiO2) surfaces with ultraviolet (UV) lights causing the disintegration of organic compounds by reactions with oxygen (O) and hydroxyl radicals (OH). The outcome was two functional prototypes that demonstrate the operation of PCO-based air purification principle. These prototypes comprise a novel TiO2 coated fibre mop system, which provide very large surface area for UV irradiation. Four commercially accessible materials were used for the construction of the mop: Tampico, Brass, Coco, and Natural synthetic. Two types of UV lights were used: 365 nm (UVA) and 270 nm (UVC). A series of tests were conducted that proved the prototype's functionality and its efficiency in lowering volatile organic compounds (VOCs) and formaldehyde (HCHO). The results shown that a MopFan with rotary mop constructed with Coco fibres and utilising UVC light achieves the best VOC and HCHO purification performance. Within 2 h, this combination lowered HCHO by 50% and VOCs by 23% approximately.

6.
Biomed Opt Express ; 14(12): 6592-6606, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38420302

ABSTRACT

Diffuse Raman spectroscopy (DRS) allows subsurface molecular analysis of optically turbid samples. Numerical modeling of light propagation was used as a method for improving the design of an DRS instrument to maximize the signal to noise ratio (SNR) while ensuring safe laser exposure parameters required for in-vivo measurements. Experimental validation of the model was performed on both phantom samples and disks implanted postmortem to mimic the typical response to foreign bodies (formation of a fibrotic capsule around an implant). A reduction of laser exposure of over 1500-fold was achieved over previous studies whilst maintaining the same Raman collection rates and reaching the safe power density of 3 mW/mm2. The validation of this approach in a subcutaneous implant in a mouse cadaver showed a further improvement of 1.5-fold SNR, with a thickness limit of detection for the fibrotic layer of 23 µm, under the same acquisition times. In the animal body, a thickness limit of detection of 16 µm was achieved. These results demonstrate the feasibility of numerical model-based optimization for DRS, and that the technique can be improved sufficiently to be used for in-vivo measurement of collagenous capsule formation as a result of the foreign body response in murine models.

7.
Adv Mater ; : e2208364, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36440539

ABSTRACT

Wound healing is a complex biological process involving close crosstalk between various cell types. Dysregulation in any of these processes, such as in diabetic wounds, results in chronic nonhealing wounds. Fibroblasts are a critical cell type involved in the formation of granulation tissue, essential for effective wound healing. 315 different polymer surfaces are screened to identify candidates which actively drive fibroblasts toward either pro- or antiproliferative functional phenotypes. Fibroblast-instructive chemistries are identified, which are synthesized into surfactants to fabricate easy to administer microparticles for direct application to diabetic wounds. The pro-proliferative microfluidic derived particles are able to successfully promote neovascularization, granulation tissue formation, and wound closure after a single application to the wound bed. These active novel bio-instructive microparticles show great potential as a route to reducing the burden of chronic wounds.

8.
Sci Rep ; 12(1): 16817, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207326

ABSTRACT

Immunity to previously encountered viruses can alter response to unrelated pathogens. We reasoned that similar mechanism may also involve SARS-CoV-2 and thereby affect the specificity and the quality of the immune response against the virus. Here, we employed high-throughput next generation phage display method to explore the link between antibody immune response to previously encountered antigens and spike (S) glycoprotein. By profiling the antibody response in COVID-19 naïve individuals with a diverse clinical history (including cardiovascular, neurological, or oncological diseases), we identified 15 highly antigenic epitopes on spike protein that showed cross-reactivity with antigens of seasonal, persistent, latent or chronic infections from common human viruses. We observed varying degrees of cross-reactivity of different viral antigens with S in an epitope-specific manner. The data show that pre-existing SARS-CoV-2 S1 and S2 cross-reactive serum antibody is readily detectable in pre-pandemic cohort. In the severe COVID-19 cases, we found differential antibody response to the 15 defined antigenic and cross-reactive epitopes on spike. We also noted that despite the high mutation rates of Omicron (B.1.1.529) variants of SARS-CoV-2, some of the epitopes overlapped with the described mutations. Finally, we propose that the resolved epitopes on spike if targeted by re-called antibody response from SARS-CoV-2 infections or vaccinations can function in chronically ill COVID-19 naïve/unvaccinated individuals as immunogenic targets to boost antibodies augmenting the chronic conditions. Understanding the relationships between prior antigen exposure at the antibody epitope level and the immune response to subsequent infections with viruses from a different strain is paramount to guiding strategies to exit the COVID-19 pandemic.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , Antigens, Viral , Chronic Disease , Epitopes , Humans , Pandemics , SARS-CoV-2
9.
ACS Omega ; 7(33): 28806-28819, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36033713

ABSTRACT

Polymeric nanoparticles (NPs) are widely used in preclinical drug delivery investigations, and some formulations are now in the clinic. However, the detailed effects of many NPs at the subcellular level have not been fully investigated. In this study, we used differentiated THP-1 macrophage cells, as a model, to investigate the metabolic changes associated with the use of poly (lactic-co-glycolic acid) (PLGA) NPs with different surface coating or conjugation chemistries. Liquid chromatography-mass spectrometry-based metabolic profiling was performed on the extracts (n = 6) of the differentiated THP-1 cells treated with plain, Pluronic (F-127, F-68, and P-85)-coated and PEG-PLGA NPs and control (no treatment). Principal component analysis and orthogonal partial least squares-discriminant analysis (OPLS-DA) in conjunction with univariate and pathway analyses were performed to identify significantly changed metabolites and pathways related to exposure of the cells to NPs. OPLS-DA of each class in the study compared to the control showed clear separation and clustering with cross-validation values of R 2 and Q 2 > 0.5. A total of 105 metabolites and lipids were found to be significantly altered in the differentiated THP-1 cell profiles due to the NP exposure, whereas more than 20 metabolic pathways were found to be affected. These pathways included glycerophospholipid, sphingolipid, linoleic acid, arginine and proline, and alpha-linolenic acid metabolisms. PLGA NPs were found to perturb some amino acid metabolic pathways and altered membrane lipids to a different degree. The metabolic effect of the PLGA NPs on the cells were comparable to those caused by silver oxide NPs and other inorganic nanomaterials. However, PEG-PLGA NPs demonstrated a reduced impact on the cellular metabolism compared to Pluronic copolymer-coated PLGA and plain PLGA NPs.

10.
Biosensors (Basel) ; 12(7)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35884254

ABSTRACT

Electrochemical impedance spectroscopy (EIS) is widely accepted as an effective and non-destructive method to assess cell health during cell-culture. However, there is a lack of compact devices compatible with microfluidic integration and microscopy that could provide the real-time and non-invasive monitoring of cell-cultures using EIS. In this paper, we reported the design and characterization of a modular EIS testing system based on a patented technology. This device was fabricated using easily processable methodologies including screen-printing of the impedance electrodes and molding or micromachining of the cell culture chamber with an easy assembly procedure. Accordingly, to obtain processable, biocompatible and sterilizable electrode materials that lower the impact of interfacial impedance on TEER (Transepithelial electrical resistance) measurements, and to enable concomitant microscopy observations, we optimized the formulation of the electrode inks and the design of the EIS electrodes, respectively. First, electrode materials were based on carbon biocompatible inks enriched with IrOx particles to obtain low interfacial impedance electrodes approaching the performances of classical non-biocompatible Ag/AgCl second-species electrodes. Secondly, we proposed three original electrode designs, which were compared to classical disk electrodes that were optically compatible with microscopy. We assessed the impact of the electrode design on the response of the impedance sensor using COMSOL Multiphysics. Finally, the performance of the impedance spectroscopy devices was assessed in vitro using human airway epithelial cell cultures.


Subject(s)
Dielectric Spectroscopy , Microfluidics , Cell Culture Techniques , Electric Impedance , Electrodes , Humans
11.
Front Bioeng Biotechnol ; 10: 836386, 2022.
Article in English | MEDLINE | ID: mdl-35832405

ABSTRACT

Design and fabrication of implants that can perform better than autologous bone grafts remain an unmet challenge for the hard tissue regeneration in craniomaxillofacial applications. Here, we report an integrated approach combining additive manufacturing with supramolecular chemistry to develop acellular mineralizing 3D printed scaffolds for hard tissue regeneration. Our approach relies on an elastin-like recombinamer (ELR) coating designed to trigger and guide the growth of ordered apatite on the surface of 3D printed nylon scaffolds. Three test samples including a) uncoated nylon scaffolds (referred to as "Uncoated"), b) ELR coated scaffolds (referred to as "ELR only"), and c) ELR coated and in vitro mineralized scaffolds (referred to as "Pre-mineralized") were prepared and tested for in vitro and in vivo performance. All test samples supported normal human immortalized mesenchymal stem cell adhesion, growth, and differentiation with enhanced cell proliferation observed in the "Pre-mineralized" samples. Using a rabbit calvarial in vivo model, 'Pre-mineralized' scaffolds also exhibited higher bone ingrowth into scaffold pores and cavities with higher tissue-implant integration. However, the coated scaffolds ("ELR only" and "Pre-mineralized") did not exhibit significantly more new bone formation compared to "Uncoated" scaffolds. Overall, the mineralizing coating offers an opportunity to enhance integration of 3D printed bone implants. However, there is a need to further decipher and tune their immunologic response to develop truly osteoinductive/conductive surfaces.

12.
Regen Biomater ; 9: rbac009, 2022.
Article in English | MEDLINE | ID: mdl-35668923

ABSTRACT

The immune system protects organisms against endogenous and exogenous harm and plays a key role in tissue development, repair and regeneration. Traditional immunomodulatory biologics exhibit limitations including degradation by enzymes, short half-life and lack of targeting ability. Encapsulating or binding these biologics within biomaterials is an effective way to address these problems. Hydrogels are promising immunomodulatory materials because of their prominent biocompatibility, tuneability and versatility. However, to take advantage of these opportunities and optimize material performance, it is important to more specifically elucidate, and leverage on, how hydrogels affect and control the immune response. Here, we summarize how key physical and chemical properties of hydrogels affect the immune response. We first provide an overview of underlying steps of the host immune response upon exposure to biomaterials. Then, we discuss recent advances in immunomodulatory strategies where hydrogels play a key role through (i) physical properties including dimensionality, stiffness, porosity and topography; (ii) chemical properties including wettability, electric property and molecular presentation;and (iii) the delivery of bioactive molecules via chemical or physical cues. Thus, this review aims to build a conceptual and practical toolkit for the design of immune-instructive hydrogels capable of modulating the host immune response.

13.
Anal Chem ; 94(26): 9389-9398, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35713879

ABSTRACT

Macrophages are important immune cells that respond to environmental cues acquiring a range of activation statuses represented by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at each end of their spectrum. Characterizing the metabolic signature (metabolic profiling) of different macrophage subsets is a powerful tool to understand the response of the human immune system to different stimuli. Here, the recently developed 3D OrbiSIMS instrument is applied to yield useful insight into the metabolome from individual cells after in vitro differentiation of macrophages into naïve, M1, and M2 phenotypes using different cytokines. This analysis strategy not only requires more than 6 orders of magnitude less sample than traditional mass spectrometry approaches but also allows the study of cell-to-cell variance. Characteristic metabolites in macrophage subsets are identified using a targeted lipid and data-driven multivariate approach highlighting amino acids and other small molecules. The diamino acids alanylasparagine and lipid sphingomyelin SM(d18/16:0) are uniquely found in M1 macrophages, while pyridine and pyrimidine are observed at increased intensity in M2 macrophages, findings which link to known biological pathways. The first demonstration of this capability illustrates the great potential of direct cell analysis for in situ metabolite profiling with the 3D OrbiSIMS to probe functional phenotype at the single-cell level using molecular signatures and to understand the response of the human body to implanted devices and immune diseases.


Subject(s)
Macrophages , Metabolomics , Cytokines/metabolism , Lipids , Macrophages/metabolism , Phenotype
14.
Commun Med (Lond) ; 2: 48, 2022.
Article in English | MEDLINE | ID: mdl-35603273

ABSTRACT

Background: Immunotherapies, including cancer vaccines and immune checkpoint inhibitors have transformed the management of many cancers. However, a large number of patients show resistance to these immunotherapies and current research has provided limited findings for predicting response to precision immunotherapy treatments. Methods: Here, we applied the next generation phage display mimotope variation analysis (MVA) to profile antibody response and dissect the role of humoral immunity in targeted cancer therapies, namely anti-tumor dendritic cell vaccine (MelCancerVac®) and immunotherapy with anti-PD-1 monoclonal antibodies (pembrolizumab). Results: Analysis of the antibody immune response led to the characterization of epitopes that were linked to melanoma-associated and cancer-testis antigens (CTA) whose antibody response was induced upon MelCancerVac® treatments of lung cancer. Several of these epitopes aligned to antigens with strong immune response in patients with unresectable metastatic melanoma receiving anti-PD-1 therapy. Conclusions: This study provides insights into the differences and similarities in tumor-specific immunogenicity related to targeted immune treatments. The antibody epitopes as biomarkers reflect melanoma-associated features of immune response, and also provide insights into the molecular pathways contributing to the pathogenesis of cancer. Concluding, antibody epitope response can be useful in predicting anti-cancer immunity elicited by immunotherapy.

15.
Biofabrication ; 14(2)2022 03 11.
Article in English | MEDLINE | ID: mdl-35226880

ABSTRACT

Three-dimensional (3D) bioprinting has emerged as an enabling tool for various biomedical applications, such as tissue regeneration and tissue model engineering. To this end, the development of bioinks with multiple functions plays a crucial role in the applications of 3D bioprinting technologies. In this study, we propose a new bioink based on two immiscible aqueous phases of gelatin methacryloyl (GelMA) and dextran, further endowed with anti-bacterial and anti-inflammatory properties. This micropore-forming GelMA-dextran (PGelDex) bioink exhibited excellent printability with vat-polymerization, extrusion, and handheld bioprinting methods. The porous structure was confirmed after bioprinting, which promoted the spreading of the encapsulated cells, exhibiting the exceptional cytocompatibility of this bioink formulation. To extend the applications of such a micropore-forming bioink, interleukin-4 (IL-4)-loaded silver-coated gold nanorods (AgGNRs) and human mesenchymal stem cells (MSCs) were simultaneously incorporated, to display synergistic anti-infection behavior and immunomodulatory function. The results revealed the anti-bacterial properties of the AgGNR-loaded PGelDex bioink for both Gram-negative and Gram-positive bacteria. The data also indicated that the presence of IL-4 and MSCs facilitated macrophage M2-phenotype differentiation, suggesting the potential anti-inflammatory feature of the bioink. Overall, this unique anti-bacterial and immunomodulatory micropore-forming bioink offers an effective strategy for the inhibition of bacterial-induced infections as well as the ability of immune-regulation, which is a promising candidate for broadened tissue bioprinting applications.


Subject(s)
Bioprinting , Tissue Scaffolds , Anti-Inflammatory Agents , Bioprinting/methods , Dextrans , Gelatin/chemistry , Gelatin/pharmacology , Hydrogels/chemistry , Interleukin-4 , Methacrylates , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
16.
Mater Today Bio ; 15: 100301, 2022 Jun.
Article in English | MEDLINE | ID: mdl-37360644

ABSTRACT

Drug discovery and toxicology is a complex process that involves considerable basic research and preclinical evaluation. These depend highly on animal testing which often fails to predict human trial outcomes due to species differences. Coupled with ethical concerns around animal testing, this leads to a high demand for improved in vitro cell culture platforms. Current research efforts, in this regard, however, are facing a challenge to provide physiologically relevant in vitro human organ models for a reliable assessment of the physiological responses of the body to drug compounds and toxins. The latest development in in vitro cell culture models, organ-on-chips (OOCs), seek to introduce more realistic models of organ function. Current OOCs often use commercial porous polymeric membranes as a barrier membrane for cell culture which is challenging due to the poor replication of the physiological architectures. Better recapitulation of the native basement membrane (BM) characteristics is desirable for modelling physical (e.g. intestine, skin and lung) and metabolic (e.g. liver) barrier models. In this review, the relevance of the physical and mechanical properties of the membrane to cell and system behaviour is elucidated. Key parameters for replicating the BM are also described. This review provides information for future development of barrier organ models focusing on BM-mimicking substrates as a core structure.

17.
Curr Opin Biotechnol ; 74: 194-203, 2022 04.
Article in English | MEDLINE | ID: mdl-34959210

ABSTRACT

Immune instructive materials, are materials with the ability to modulate or mimic the function of immune cells, provide exciting opportunities for developing new therapies in many areas including medical devices, chronic inflammation, cancer, and autoimmune diseases. In this review we highlight some of the latest research involving material-based strategies for modulating macrophage phenotype and dendritic cell function, as well as a brief description on biomaterial use in T cell and natural killer cell engineering. We highlight studies on material topography, size, shape and surface chemistry to reduce inflammation, along with scaffold and hydrogel delivery systems that are used for modulating DC phenotype and influencing T cell polarization. Artificial antigen presenting cells are also reviewed as a promising approach to cancer immunotherapy.


Subject(s)
Dendritic Cells , Neoplasms , Biocompatible Materials , Humans , Immunotherapy , Inflammation , Neoplasms/therapy
19.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33941687

ABSTRACT

Here, we present a physiologically relevant model of the human pulmonary alveoli. This alveolar lung-on-a-chip platform is composed of a three-dimensional porous hydrogel made of gelatin methacryloyl with an inverse opal structure, bonded to a compartmentalized polydimethylsiloxane chip. The inverse opal hydrogel structure features well-defined, interconnected pores with high similarity to human alveolar sacs. By populating the sacs with primary human alveolar epithelial cells, functional epithelial monolayers are readily formed. Cyclic strain is integrated into the device to allow biomimetic breathing events of the alveolar lung, which, in addition, makes it possible to investigate pathological effects such as those incurred by cigarette smoking and severe acute respiratory syndrome coronavirus 2 pseudoviral infection. Our study demonstrates a unique method for reconstitution of the functional human pulmonary alveoli in vitro, which is anticipated to pave the way for investigating relevant physiological and pathological events in the human distal lung.


Subject(s)
Lab-On-A-Chip Devices , Models, Biological , Pulmonary Alveoli/physiology , Alveolar Epithelial Cells , Antiviral Agents/pharmacology , Cigarette Smoking/adverse effects , Dimethylpolysiloxanes/chemistry , Gelatin/chemistry , Humans , Hydrogels/chemistry , Methacrylates/chemistry , Porosity , Pulmonary Alveoli/cytology , Pulmonary Alveoli/pathology , Respiration , Respiratory Mucosa/cytology , Respiratory Mucosa/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
20.
Biomicrofluidics ; 15(2): 021501, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33791050

ABSTRACT

Respiratory viral infections are leading causes of death worldwide. A number of human respiratory viruses circulate in all age groups and adapt to person-to-person transmission. It is vital to understand how these viruses infect the host and how the host responds to prevent infection and onset of disease. Although animal models have been widely used to study disease states, incisive arguments related to poor prediction of patient responses have led to the development of microfluidic organ-on-chip models, which aim to recapitulate organ-level physiology. Over the past decade, human lung chips have been shown to mimic many aspects of the lung function and its complex microenvironment. In this review, we address immunological responses to viral infections and elaborate on human lung airway and alveolus chips reported to model respiratory viral infections and therapeutic interventions. Advances in the field will expedite the development of therapeutics and vaccines for human welfare.

SELECTION OF CITATIONS
SEARCH DETAIL
...