Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Poult Sci ; 103(1): 103254, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38016406

ABSTRACT

The current research was conducted to determine the aflatoxigenic and non-aflatoxigenic Aspergillus flavus isolates and the frequency of aflatoxin levels (B1, B2, G1, G2), in main feed ingredients (corn and soybean meal) and poultry finished feed (in mash and pellet forms). Eighty-five samples of corn, soybean meal, and poultry finished feed was randomly collected from feed mills in Iran. Regarding macro and microscopic morphological criteria, Aspergillus isolates were identified, and aflatoxins were determined by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC). All of poultry feed samples were contaminated with different levels of aflatoxins, ranging from ND (they were not detected in those samples) to 5.58 µg/kg. At all stages of processing, the poultry feed had lower levels of aflatoxins in comparison with the accepted/residue levels of poultry feed mills. Higher amounts of aflatoxins (B1, B2, G1, G2, and total) were detected in pelleted feed, compared to other poultry samples (P < 0.05). The total toxin level in mash feed samples reached a maximum of 3.31 ppb. The results indicate that finished feed samples in pellet form may pose a greater risk than their individual ingredients in poultry feed, particularly when suboptimal conditions exist for eliminating fungal populations. So, the prevention and reduction of (Aspergillus section Flavi) are highly important in maintaining quality control of poultry feed, as the production of aflatoxins can occur during the process of converting raw ingredients into finished feed.


Subject(s)
Aflatoxins , Animals , Poultry , Food Contamination/analysis , Chickens , Animal Feed/analysis , Aspergillus , Zea mays/chemistry , Glycine max , Aflatoxin B1
2.
Curr Med Mycol ; 6(1): 22-29, 2020.
Article in English | MEDLINE | ID: mdl-32420504

ABSTRACT

BACKGROUND AND PURPOSE: This study was conducted to evaluate the presence of aflatoxigenic strains and level of aflatoxin in poultry feed. Aflatoxigenic strains were investigated in corn and soybean meal as the ingredients of poultry feed, as well as in two types of commercial feed, namely pellet and mash. The gene sequencing was performed to identify the species of Aspergillus section Flavi. MATERIALS AND METHODS: All samples were randomly collected from feed storage silos located in Iran in 2018. The samples were cultured on specialized media for 2 weeks at 28ºC. Identification of Aspergillus section Flavi isolates was based on macro- and microscopic morphological criteria and molecular analysis. The thin-layer chromatography (TLC) was applied to confirm the aflatoxigenic isolates. In addition, the level of aflatoxin B1 (AFB1) produced by these isolates was determined by high-performance liquid chromatography. The strains were subjected to sequence analysis, and Bt2 PCR products were purified by the QIAquick PCR purification kit. At the final stage, the phylogenetic tree was built. RESULTS: Among 54 isolates identified as Aspergillus section Flavi, 20 (37%) isolates were found to produce aflatoxin at a range of 11.28±1.18 to 2239.92±92.26 µg/g fungal dry weight. The aflatoxigenic isolates had the frequencies of 45%, 40%, 10%, and 5% in the corn, pellet, soybean meal, and mash samples, respectively. Furthermore, the mean concentrations of AFB1 were significantly higher in the corn samples (707.04±39.05) than that of other poultry feed samples (P<0.05). A total of 34 (63%) isolates were detected as non-aflatoxigenic on the yeast extract-sucrose broth in TLC analysis. The toxigenic isolates produced the highest (2232.62±55.49) and lowest (11.28±1.18) levels of AFB1 in the corn samples, compared to other feedstuffs. Furthermore, the mean level of AFB1 in mash product was 554.09±10.36 µg/g, compared to a mean level of 229.22±11.09 µg/g in pellets. The isolates were randomly selected, sequenced, and then analyzed. Subsequently, the phylogenetic tree of Aspergillus section Flavi was plotted. CONCLUSION: The process of converting raw ingredients to compound poultry feed is more hazardous when there is not enough time and temperature provided to eliminate aflatoxigenic isolates. Therefore, Aspergillus section Flavi in poultry feed can pose a threat to the poultry industry and poultry products, thereby affecting the health status of humans. Unprocessed/processed materials, such as corns and pelleted feed, need further monitoring, especially when conditions are not optimal for destroying the fungus.

3.
Iran J Microbiol ; 8(1): 47-54, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27092224

ABSTRACT

BACKGROUND AND OBJECTIVES: Unhygienic poultry feedstuffs can lead to nutrient losses and detrimental effect on poultry production and public health. In the present study, mycobiota and colony-forming units per gram in ingredients and finish poultry feed was evaluated with special reference to potentially mycotoxigenic fungi. MATERIALS AND METHODS: Eighty five samples of corn, soybean meal and poultry finished feed were collected from nine poultry feed factories located in three provinces i.e. Tehran, Alborz and Qom in Iran from October 2014 to January 2015. Samples were cultured on Sabouraud dextrose agar (SDA), Aspergillus flavus and parasiticus agar (AFPA) and dichloran rosebengal chloramphenicol agar (DRBC) and incubated at 28 °C for 7-10 days. Purified fungal colonies were identified by a combination of macro- and microscopic morphological criteria. For determining the rate of fungal contamination, samples were cultured on SDA and colony forming units (CFUs) were calculated. RESULTS: A total of 384 fungal isolates belonging to 7 genera of filamentous fungi and yeasts were obtained from corn (124 isolates), soybean meal (92 isolates), and feed before (72 isolates), and after pelleting (96 isolates). The most prominent fungal isolate in corn, soybean meal and feed before pelleting (feed as mash form) was Fusarium but in feed after pelleting was Aspergillus. Among 5 Aspergillus species isolated, potentially aflatoxigenic A. flavus isolates was predominant in corn (46.6%), soybean meal (72.7%) and poultry finished feed (75%). CFUs results indicated that 9/22 corn samples (40.9%), none of 22 soybean meal samples, 19/41 finished feed (46.3%) were contaminated higher than the standard limit. CONCLUSIONS: Our results indicated that corn, soybean meal and finished feed of poultry feed mill are contaminated with various fungal genera by different levels sometimes higher that the standard limits. Contamination with potentially mycotoxigenic fungi especially Aspergillus species may be considered as a human public health hazard.

SELECTION OF CITATIONS
SEARCH DETAIL
...