Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 101(Pt A): 108192, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34607230

ABSTRACT

The mounting evidence regarding the pathogenesis of COVID-19 indicated that the cytokine storm has an axial role in the severity of this disease, which may lead to thrombotic complications, acute respiratory distress syndrome (ARDS), and myocardial damage, among other consequences. It has recently been demonstrated that statins are known to have anti-viral, anti-inflammatory, anti-thrombotic, and immunomodulatory features; however, their advantage has not been evaluated in COVID-19. This study aimed to investigate the protective effects of lovastatin in intensive care unit (ICU) patients with COVID-19. The case-control study consists of 284 ICU patients, which classified into three groups as follows: 1) the patients who no received lovastatin as a control (92 patients), 2) patients received 20 mg per day lovastatin (99 patients), and 3) patients received 40 mg per day lovastatin (93 patients). Each group's demographic and clinical parameters, along with CRP, interleukin (IL)-6, IL-8 levels, and mortality rate, were studied in three-time points. The results showed that there was no statistically significant difference between our study groups in terms of age and sex. (P > 0.05). Besides, in patients, receiving lovastatin the CRP, IL-6, IL-8 levels were significantly decreased from T1 to T3 than to the control group. Our results also showed that the use of lovastatin in COVID-19 patients significantly reduced the length of hospitalization in the ICU compared with the control group. In addition, our results showed that the mortality rate in patients receiving lovastatin was lower when compared to the control group; however, this difference was not statistically significant. Since the cytokine storm is a significant factor in the pathology of SARS-CoV-2, our findings highlighted the potential use of lovastatin to mitigate the inflammatory response induced by SARS-CoV-2 infection.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19 Drug Treatment , Lovastatin/pharmacology , Adult , Anti-Inflammatory Agents/therapeutic use , COVID-19/blood , Case-Control Studies , Critical Care/methods , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/drug therapy , Cytokines/drug effects , Female , Hospitalization , Humans , Intensive Care Units , Interleukin-6/metabolism , Interleukin-8/metabolism , Lovastatin/therapeutic use , Male , Middle Aged , Receptors, Immunologic/metabolism , Sex Factors
2.
Life Sci ; 257: 118087, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32702442

ABSTRACT

AIMS: Recent studies suggest that direct exposure of cells to fractionated radiotherapy might induce radioresistance. However, the effects of fractionated radiotherapy on the non-irradiated bystander cells remain unclear. We hypothesized that fractionated radiotherapy could enhance radioresistance and proliferation of bystander cells. MAIN METHODS: Human tumor cell lines, including A549 and HT29 were irradiated (2 Gy per day). The irradiated cells (either A549 or HT29) were co-cultured with non-irradiated cells of the same line using transwell co-culture system. Tumor cell proliferation, radioresistance and apoptosis were measured using MTT assay, clonogenic survival assay and Annexin-V in bystander cells, respectively. In addition, activation of Chk1 (Ser 317), Chk2 (Thr 68) and Akt (Ser473) were measured via western blot. KEY FINDINGS: Irradiated HT29 cells induced conventional bystander effects detected as modulation of clonogenic survival parameters (decreased area under curve, D10 and ED50 and increased α) and proliferation in recipient neighbors. While, irradiated A549 cells significantly enhanced the radioresistance and proliferation of bystander cells. These changes were accompanied with enhanced activation of Chk1, Chk2 and Akt in non-irradiated bystander A549 cells. Moreover, both bystander effects (damaging and protective) were mediated through secreted factors. SIGNIFICANCE: These findings suggest that fractionated radiotherapy could promote proliferation and radioresistance of bystander cells probably through survival and proliferation pathways.


Subject(s)
Apoptosis/radiation effects , Bystander Effect/radiation effects , Cell Proliferation/radiation effects , Radiation Tolerance/radiation effects , A549 Cells , Cell Survival/radiation effects , Coculture Techniques , HT29 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...