Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(3): 2105-2116, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38198599

ABSTRACT

Solid-state devices made from correlated oxides, such as perovskite nickelates, are promising for neuromorphic computing by mimicking biological synaptic function. However, comprehending dopant action at the nanoscale poses a formidable challenge to understanding the elementary mechanisms involved. Here, we perform operando infrared nanoimaging of hydrogen-doped correlated perovskite, neodymium nickel oxide (H-NdNiO3, H-NNO), devices and reveal how an applied field perturbs dopant distribution at the nanoscale. This perturbation leads to stripe phases of varying conductivity perpendicular to the applied field, which define the macroscale electrical characteristics of the devices. Hyperspectral nano-FTIR imaging in conjunction with density functional theory calculations unveils a real-space map of multiple vibrational states of H-NNO associated with OH stretching modes and their dependence on the dopant concentration. Moreover, the localization of excess charges induces an out-of-plane lattice expansion in NNO which was confirmed by in situ X-ray diffraction and creates a strain that acts as a barrier against further diffusion. Our results and the techniques presented here hold great potential for the rapidly growing field of memristors and neuromorphic devices wherein nanoscale ion motion is fundamentally responsible for function.

2.
Sci Rep ; 13(1): 16184, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37758823

ABSTRACT

One of the primary goals for the researchers is to create a high-quality sensor with a simple structure because of the urgent requirement to identify biomolecules at low concentrations to diagnose diseases and detect hazardous chemicals for health early on. Recently graphene has attracted much interest in the field of improved biosensors. Meanwhile, graphene with new materials such as CaF2 has been widely used to improve the applications of graphene-based sensors. Using the fantastic features of the graphene/CaF2 multilayer, this article proposes an improvement sensor in the sensitivity (S), the figure of merit (FOM), and the quality factor (Q). The proposed sensor is based on the five-layers graphene/dielectric grating integrated with a Fabry-Perot cavity. By tuning graphene chemical potential (µc), due to the semi-metal features of graphene, the surface plasmon resonance (SPR) waves excited at the graphene/dielectric boundaries. Due to the vertical polarization of the source to the gratings and the symmetry of the electric field, both corners of the grating act as electric dipoles, and this causes the propagation of plasmonic waves on the graphene surface to propagate towards each other. Finally, it causes Fabry-Perot (FP) interference on the surface of graphene in the proposed structure's active medium (the area where the sample is located). In this article, using the inherent nature of FP interference and its S to the environment's refractive index (RI), by changing a minimal amount in the RI of the sample, the resonance wavelength (interferometer order) shifts sharply. The proposed design can detect and sense some cancers, such as Adrenal Gland Cancer, Blood Cancer, Breast Cancer I, Breast Cancer II, Cervical Cancer, and skin cancer precisely. By optimizing the structure, we can achieve an S as high as 9000 nm/RIU and a FOM of about 52.14 for the first resonance order (M1). Likewise, the remarkable S of 38,000 nm/RIU and the FOM of 81 have been obtained for the second mode (M2). In addition, the proposed label-free SPR sensor can detect changes in the concentration of various materials, including gases and biomolecules, hemoglobin, breast cancer, diabetes, leukemia, and most alloys, with an accuracy of 0.001. The proposed sensor can sense urine concentration with a maximum S of 8500 nm/RIU and cancers with high S in the 6000 nm/RIU range to 7000 nm/RIU. Also, four viruses, such as M13 bacteriophage, HIV type one, Herpes simplex type 1, and influenza, have been investigated, showing Maximum S (for second resonance mode of λR(M2) of 8000 nm/RIU (λR(M2) = 11.2 µm), 12,000 nm/RIU (λR(M2) = 10.73 µm), 38,000 nm/RIU (λR(M2) = 11.78 µm), and 12,000 nm/RIU (λR(M2) = 10.6 µm), respectively, and the obtained S for first resonance mode (λR(M1)) for mentioned viruses are 4740 nm/RIU (λR(M1) = 8.7 µm), 8010 nm/RIU (λR(M1) = 8.44 µm), 8100 nm/RIU (λR(M1) = 10.15 µm), and 9000 (λR(M1) = 8.36 µm), respectively.


Subject(s)
Diabetes Mellitus , Graphite , Uterine Cervical Neoplasms , Female , Humans , Surface Plasmon Resonance , Gases , Bacteriophage M13
SELECTION OF CITATIONS
SEARCH DETAIL
...