Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 11: 1322475, 2023.
Article in English | MEDLINE | ID: mdl-38090348

ABSTRACT

In this study, BaZr0.87Y0.1M0.03O3-δ perovskite electrolytes with sintering aids (M = Mn, Co, and Fe) were synthesized by a sustainable approach using spinach powder as a chelating agent and then compared with chemically synthesized BaZr0.87Y0.1M0.03O3-δ (M = Mn, Co, and Fe) electrolytes for intermediate temperature SOFCs. This is the first example of such a sustainable synthesis of perovskite materials with sintering aids. Structural analysis revealed the presence of a cubic perovskite structure in BaZr0.87Y0.1M0.03O3-δ (M = Mn, Co, and Fe) samples synthesized by both green and conventional chemical methods. No significant secondary phases were observed in the samples synthesized by a sustainable approach. The observed phenomena of plane shift were because of the disparities between ionic radii of the dopants, impurities, and host materials. The surface morphology analysis revealed a denser microstructure for the electrolytes synthesized via green routes due to metallic impurities in the organic chelating agent. The absence of significant impurities was also observed by compositional analysis, while functional groups were identified through Fourier-transform infrared spectroscopy. Conductivity measurements showed that BaZr0.87Y0.1M0.03O3-δ (M = Mn, Co, and Fe) electrolytes synthesized by oxalic acid have higher conductivities compared to BaZr0.87Y0.1M0.03O3-δ (M = Mn, Co, and Fe) electrolytes synthesized by the green approach. The button cells employing BaZr0.87Y0.1Co0.03O3-δ electrolytes synthesized by the chemical and green routes achieved peak power densities 344 and 271 mW·cm-2 respectively, suggesting that the novel green route can be applied to synthesize SOFC perovskite materials with minimal environmental impact and without significantly compromising cell performance.

2.
Front Plant Sci ; 13: 958978, 2022.
Article in English | MEDLINE | ID: mdl-36247568

ABSTRACT

Wastewater from tanneries is a major source of heavy metals in soil and plants when used for crop irrigation. The unavoidable toxicological effects of this contamination, however, can be minimized through two independent steps discussed in the present study. In the first step, a batch sorption experiment was conducted in which Cr was adsorbed through bentonite clay. For this purpose, DTPA extraction method was used to analyze Cr concentration in the soil after regular time intervals (0.5, 1, 2, 6, 8, 9, 10.5, 11.5, and 20.3 h) which reduced Cr concentration from 38.542 mgL-1 for 30 min to 5.6597 mgL-1 for 20.3 h, respectively, by applying 1% bentonite. An increase in the contact time efficiently allowed soil adsorbent to adsorb maximum Cr from soil samples. In the second step, a pot experiment was conducted with 10 different treatments to improve the physiological and biochemical parameters of the Solanum melongena L. irrigated under tanneries' wastewater stress. There were four replicates, and the crop was harvested after 30 days of germination. It was seen that the application of wastewater significantly (P < 0.01) reduced growth of Solanum melongena L. by reducing root (77%) and shoot (63%) fresh weight when compared with CFOP (Ce-doped Fe2O3 nanoparticles); chlorophyll a and b (fourfolds) were improved under CFOP application relative to control (CN). However, the deleterious effects of Cr (86%) and Pb (90%) were significantly decreased in shoot through CFOP application relative to CN. Moreover, oxidative damage induced by the tannery's wastewater stress (P < 0.01) was tolerated by applying different soil amendments. However, results were well pronounced with the application of CFOP which competitively decreased the concentrations of MDA (95%), H2O2 (89%), and CMP (85%) by efficiently triggering the activities of antioxidant defense mechanisms such as APX (threefold), CAT (twofold), and phenolics (75%) in stem relative to CN. Consequently, all the applied amendments (BN, BT, FOP, and CFOP) have shown the ability to efficiently tolerate the tannery's wastewater stress; results were more pronounced with the addition of CFOP and FOP+BT by improving physiological and biochemical parameters of Solanum melongena L. in an eco-friendly way.

3.
Nanoscale Res Lett ; 16(1): 91, 2021 May 22.
Article in English | MEDLINE | ID: mdl-34021844

ABSTRACT

The present study is concerned with evaluating the influence of various concentrations of Ag within Cu:Ag bimetallic nanoparticles developed for use as a promising anti-bacterial agent against antibiotic-resistant bacteria. Here, Cu:Ag bimetallic nanoparticles with various concentration ratios (2.5, 5.0, 7.5, and 10 wt%) of Ag in fixed amount of Cu labeled as 1:0.025, 1:0.050, 1:0.075, and 1:0.1 were synthesized using co-precipitation method with ammonium hydroxide and deionized water as solvent, polyvinyl pyrrolidone as a capping agent, and sodium borohydride and ascorbic acid as reducing agents. These formulated products were characterized through a variety of techniques. XRD confirmed phase purity and detected the presence of distinct fcc structures belonging to Cu and Ag phases. FTIR spectroscopy confirmed the presence of vibrational modes corresponding to various functional groups and recorded characteristic peak emanating from the bimetallic. UV-visible spectroscopy revealed reduction in band gap with increasing Ag content. SEM and HR-TEM micrographs revealed spherical morphology of Ag-doped Cu bimetallic with small and large scale agglomerations. The samples exhibited varying dimensions and interlayer spacing. Bactericidal action of synthesized Cu:Ag bimetallic NPs depicted statistically significant (P < 0.05) inhibition zones recorded for various concentrations of Ag dopant against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Acinetobacter baumannii (A. baumannii) ranging from (0.85-2.8 mm), (0.55-1.95 mm) and (0.65-1.85 mm), respectively. Broadly, Cu:Ag bimetallic NPs were found to be more potent against gram-positive compared with gram-negative. Molecular docking study of Ag-Cu bimetallic NPs was performed against ß-lactamase which is a key enzyme of cell wall biosynthetic pathway from both S. aureus (Binding score: - 4.981 kcal/mol) and A. bauminnii (Binding score: - 4.013 kcal/mol). Similarly, binding interaction analysis against FabI belonging to fatty acid biosynthetic pathway from A. bauminnii (Binding score: - 3.385 kcal/mol) and S. aureus (Binding score: - 3.012 kcal/mol) along with FabH from E. coli (Binding score: - 4.372 kcal/mol) was undertaken. These theoretical computations indicate Cu-Ag bimetallic NPs as possible inhibitor of selected enzymes. It is suggested that exploring in vitro inhibition potential of these materials may open new avenues for antibiotic discovery.

4.
Plant Cell Environ ; 41(8): 1791-1805, 2018 08.
Article in English | MEDLINE | ID: mdl-29499086

ABSTRACT

Deep-shade plants have adapted to low-light conditions by varying morphology and physiology of cells and chloroplasts, but it still remains unclear, if prolonged periods of high-light or darkness induce additional modifications in chloroplasts' anatomy and pigment patterns. We studied giant chloroplasts (bizonoplasts) of the deep-shade lycopod Selaginella erythropus in epidermal cells of mature fully developed microphylls and subjected them to prolonged darkness and high-light conditions. Chloroplast size and ultrastructure were investigated by light and electron microscopy. Physiological traits were studied by pigment analyses, photosynthetic performance of photosystem II, and formation of reactive oxygen species. Results show that (a) thylakoid patterns and shape of mature bizonoplasts vary in response to light and dark conditions. (b) Prolonged darkness induces transitory formation of prolamellar bodies, which so far have not been described in mature chloroplasts. (c) Photosynthetic activity is linked to structural responses of chloroplasts. (d) Photosystem II is less active in the upper zone of bizonoplasts and more efficient in the grana region. (e) Formation of reactive oxygen species reflects the stress level caused by high-light. We conclude that during prolonged darkness, chlorophyll persists and even increases; prolamellar bodies form de novo in mature chloroplasts; bizonoplasts have spatial heterogeneity of photosynthetic performance.


Subject(s)
Chloroplasts/radiation effects , Selaginellaceae/radiation effects , Adaptation, Physiological , Chlorophyll/metabolism , Chloroplasts/metabolism , Chloroplasts/physiology , Chloroplasts/ultrastructure , Microscopy, Electron , Photoperiod , Photosynthesis/radiation effects , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/radiation effects , Reactive Oxygen Species/metabolism , Selaginellaceae/anatomy & histology , Selaginellaceae/metabolism , Selaginellaceae/physiology , Thylakoids/metabolism , Thylakoids/radiation effects , Thylakoids/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...