Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 16: 949224, 2022.
Article in English | MEDLINE | ID: mdl-35966996

ABSTRACT

Prosthetic devices that replace a lost limb have become increasingly performant in recent years. Recent advances in both software and hardware allow for the decoding of electroencephalogram (EEG) signals to improve the control of active prostheses with brain-computer interfaces (BCI). Most BCI research is focused on the upper body. Although BCI research for the lower extremities has increased in recent years, there are still gaps in our knowledge of the neural patterns associated with lower limb movement. Therefore, the main objective of this study is to show the feasibility of decoding lower limb movements from EEG data recordings. The second aim is to investigate whether well-known neuroplastic adaptations in individuals with an amputation have an influence on decoding performance. To address this, we collected data from multiple individuals with lower limb amputation and a matched able-bodied control group. Using these data, we trained and evaluated common BCI methods that have already been proven effective for upper limb BCI. With an average test decoding accuracy of 84% for both groups, our results show that it is possible to discriminate different lower extremity movements using EEG data with good accuracy. There are no significant differences (p = 0.99) in the decoding performance of these movements between healthy subjects and subjects with lower extremity amputation. These results show the feasibility of using BCI for lower limb prosthesis control and indicate that decoding performance is not influenced by neuroplasticity-induced differences between the two groups.

2.
J Neural Eng ; 19(1)2022 02 28.
Article in English | MEDLINE | ID: mdl-35086076

ABSTRACT

Objective.Biosignal control is an interaction modality that allows users to interact with electronic devices by decoding the biological signals emanating from the movements or thoughts of the user. This manner of interaction with devices can enhance the sense of agency for users and enable persons suffering from a paralyzing condition to interact with everyday devices that would otherwise be challenging for them to use. It can also improve control of prosthetic devices and exoskeletons by making the interaction feel more natural and intuitive. However, with the current state of the art, several issues still need to be addressed to reliably decode user intent from biosignals and provide an improved user experience over other interaction modalities. One solution is to leverage advances in deep learning (DL) methods to provide more reliable decoding at the expense of added computational complexity. This scoping review introduces the basic concepts of DL and assists readers in deploying DL methods to a real-time control system that should operate under real-world conditions.Approach.The scope of this review covers any electronic device, but with an emphasis on robotic devices, as this is the most active area of research in biosignal control. We review the literature pertaining to the implementation and evaluation of control systems that incorporate DL to identify the main gaps and issues in the field, and formulate suggestions on how to mitigate them.Main results.The results highlight the main challenges in biosignal control with DL methods. Additionally, we were able to formulate guidelines on the best approach to designing, implementing and evaluating research prototypes that use DL in their biosignal control systems.Significance.This review should assist researchers that are new to the fields of biosignal control and DL in successfully deploying a full biosignal control system. Experts in their respective fields can use this article to identify possible avenues of research that would further advance the development of biosignal control with DL methods.


Subject(s)
Deep Learning , Computer Systems , Movement
3.
J Neurosci Methods ; 305: 1-16, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29738806

ABSTRACT

BACKGROUND: Brain-computer interface (BCI) is a new communication pathway for users with neurological deficiencies. The implementation of a BCI system requires complex electroencephalography (EEG) signal processing including filtering, feature extraction and classification algorithms. Most of current BCI systems are implemented on personal computers. Therefore, there is a great interest in implementing BCI on embedded platforms to meet system specifications in terms of time response, cost effectiveness, power consumption, and accuracy. NEW-METHOD: This article presents an embedded-BCI (EBCI) system based on a Stratix-IV field programmable gate array. The proposed system relays on the weighted overlap-add (WOLA) algorithm to perform dynamic filtering of EEG-signals by analyzing the event-related desynchronization/synchronization (ERD/ERS). The EEG-signals are classified, using the linear discriminant analysis algorithm, based on their spatial features. RESULTS: The proposed system performs fast classification within a time delay of 0.430 s/trial, achieving an average accuracy of 76.80% according to an offline approach and 80.25% using our own recording. The estimated power consumption of the prototype is approximately 0.7 W. COMPARISON-WITH-EXISTING-METHOD: Results show that the proposed EBCI system reduces the overall classification error rate for the three datasets of the BCI-competition by 5% compared to other similar implementations. Moreover, experiment shows that the proposed system maintains a high accuracy rate with a short processing time, a low power consumption, and a low cost. CONCLUSIONS: Performing dynamic filtering of EEG-signals using WOLA increases the recognition rate of ERD/ERS patterns of motor imagery brain activity. This approach allows to develop a complete prototype of a EBCI system that achieves excellent accuracy rates.


Subject(s)
Brain-Computer Interfaces , Algorithms , Brain/physiology , Brain-Computer Interfaces/economics , Discriminant Analysis , Electroencephalography/economics , Electroencephalography/methods , Equipment Design , Humans , Imagination/physiology , Linear Models , Motor Activity/physiology , Signal Processing, Computer-Assisted , Software , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...