Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Traffic Inj Prev ; 22(3): 236-241, 2021.
Article in English | MEDLINE | ID: mdl-33688754

ABSTRACT

OBJECTIVE: The primary aim of this article is to extensively study female occupant kinematics and muscle activations in vehicle maneuvers potentially occurring in precrash situations and with different seat belt configurations. The secondary aim is to provide validation data for active human body models (AHBMs) of female occupants in representative precrash loading situations. METHODS: Front seat female passengers wearing a 3-point seat belt, with either standard or pre-pretensioning functionality, were subjected to multiple autonomously carried-out lane change and lane change with braking maneuvers while traveling at 73 km/h. This article quantifies the head center of gravity and T1 vertebra body (T1) linear and rotational displacements. This article also includes surface electromyography (EMG) data collected from 38 muscles in the neck, torso, and upper and lower extremities, all normalized by maximum voluntary contraction (MVC). The raw EMG data were filtered, rectified, and smoothed. Separate Wilcoxon signed-rank tests were performed on EMG onset and amplitude as well as peak displacements of head and T1 considering 2 paired samples with the belt configuration as an independent variable. RESULTS: Significantly smaller lateral and forward displacements for head and T1 were found with the pre-pretensioner belt versus the standard belt (P < .05). Averaged muscle activity, mainly in the neck, lumbar extensor, and abdominal muscles, increased up to 16% MVC immediately after the vehicle accelerated in the lateral direction. Muscles in the right and left sides of the body displayed differences in activation time and amplitude relative to the vehicle's lateral motion. For specific muscles, lane changes with the pre-pretensioner belt resulted in earlier muscle activation onsets and significantly smaller activation amplitudes compared to the standard belt (P < .05). CONCLUSIONS: The presented results from female passengers complement the previously published results from male passengers subjected to the same loading scenarios. The data provided in this article can be used for validation of AHBMs of female occupants in both sagittal and lateral loading scenarios potentially occurring prior to a crash. Additionally, our results show that a pre-pretensioner belt decreases muscle activation onset and amplitude as well as forward and lateral displacements of head and T1 compared to a standard belt, confirming previously published results.


Subject(s)
Accidents, Traffic/prevention & control , Head/diagnostic imaging , Muscle Contraction/physiology , Muscle, Skeletal/diagnostic imaging , Neck/diagnostic imaging , Torso/diagnostic imaging , Adult , Automobile Driving , Biomechanical Phenomena , Electromyography , Female , Head/physiology , Humans , Muscle, Skeletal/physiology , Neck/physiology , Seat Belts/statistics & numerical data , Task Performance and Analysis , Torso/physiology , Young Adult
2.
Traffic Inj Prev ; 20(sup1): S43-S51, 2019.
Article in English | MEDLINE | ID: mdl-31381435

ABSTRACT

Objective: The introduction of integrated safety technologies in new car models calls for an improved understanding of the human occupant response in precrash situations. The aim of this article is to extensively study occupant muscle activation in vehicle maneuvers potentially occurring in precrash situations with different seat belt configurations. Methods: Front seat male passengers wearing a 3-point seat belt with either standard or pre-pretensioning functionality were exposed to multiple autonomously carried out lane change and lane change with braking maneuvers while traveling at 73 km/h. This article focuses on muscle activation data (surface electromyography [EMG] normalized using maximum voluntary contraction [MVC] data) obtained from 38 muscles in the neck, upper extremities, the torso, and lower extremities. The raw EMG data were filtered, rectified, and smoothed. All muscle activations were presented in corridors of mean ± one standard deviation. Separate Wilcoxon signed ranks tests were performed on volunteers' muscle activation onset and amplitude considering 2 paired samples with the belt configuration as an independent factor. Results: In normal driving conditions prior to any of the evasive maneuvers, activity levels were low (<2% MVC) in all muscles except for the lumbar extensors (3-5.5% MVC). During the lane change maneuver, selective muscles were activated and these activations restricted the sideway motions due to inertial loading. Averaged muscle activity, predominantly in the neck, lumbar extensor, and abdominal muscles, increased up to 24% MVC soon after the vehicle accelerated in lateral direction for all volunteers. Differences in activation time and amplitude between muscles in the right and left sides of the body were observed relative to the vehicle's lateral motion. For specific muscles, lane changes with the pre-pretensioner belt were associated with earlier muscle activation onsets and significantly smaller activation amplitudes than for the standard belt (P < .05). Conclusions: Applying a pre-pretensioner belt affected muscle activations; that is, amplitude and onset time. The present muscle activation data complement the results in a preceding publication, the volunteers' kinematics and the boundary conditions from the same data set. An effect of belt configuration was also seen on previously published volunteers' kinematics with lower lateral and forward displacements for head and upper torso using the pre-pretensioner belt versus the standard belt. The data provided in this article can be used for validation and further improvement of active human body models with active musculature in both sagittal and lateral loading scenarios intended for simulation of some evasive maneuvers that potentially occur prior to a crash.


Subject(s)
Accidents, Traffic/prevention & control , Automobile Driving/statistics & numerical data , Deceleration , Muscles/physiology , Seat Belts/statistics & numerical data , Adult , Aged , Biomechanical Phenomena , Equipment Design , Humans , Male , Middle Aged , Young Adult
3.
Clin Biomech (Bristol, Avon) ; 35: 49-55, 2016 06.
Article in English | MEDLINE | ID: mdl-27128765

ABSTRACT

BACKGROUND: The relationship between activation of the stabilizing muscles of the lumbopelvic region during the Active Straight Leg Raise test and pelvic girdle pain remains unknown. Therefore, the aim was to examine automatic contractions in relation to pre-activation in the muscles of the pelvic floor and the lower lateral abdominal wall during leg lifts, performed as the Active Straight Leg Raise test, in women with and without persistent postpartum pelvic girdle pain. METHODS: Sixteen women with pelvic girdle pain and eleven pain-free women performed contralateral and ipsilateral leg lifts, while surface electromyographic activity was recorded from the pelvic floor and unilaterally from the lower lateral abdominal wall. As participants performed leg lifts onset time was calculated as the time from increased muscle activity to leg lift initiation. FINDINGS: No significant differences were observed between the groups during the contralateral leg lift. During the subsequent ipsilateral leg lift, pre-activation in the pelvic floor muscles was observed in 36% of women with pelvic girdle pain and in 91% of pain-free women (P=0.01). Compared to pain-free women, women with pelvic girdle pain also showed significantly later onset time in both the pelvic floor muscles (P=0.01) and the muscles of the lower lateral abdominal wall (P<0.01). INTERPRETATION: We suggest that disturbed motor activation patterns influence women's ability to stabilize the pelvis during leg lifts. This could be linked to provocation of pain during repeated movements.


Subject(s)
Abdominal Wall/physiology , Muscle Contraction/physiology , Pelvic Floor/physiology , Pelvic Girdle Pain/physiopathology , Abdominal Muscles/physiology , Adult , Case-Control Studies , Electromyography , Female , Humans , Leg/physiology , Motor Activity/physiology , Movement/physiology , Postpartum Period
SELECTION OF CITATIONS
SEARCH DETAIL
...