Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioimpacts ; 12(3): 247-259, 2022.
Article in English | MEDLINE | ID: mdl-35677667

ABSTRACT

Introduction: Alumina-titanium (Al2O3-Ti) composites with enhanced mechanical and corrosion properties have been recently developed for potential applications in orthopaedics and hard tissue replacements. However, before any clinical use, their interactions with biological environment must be examined. Methods: The aim of this study, therefore, was to assess the biocompatibility of three Al2O3-Ti composites having 25, 50, and 75 volume percentages of titanium. These materials were made by spark plasma sintering (SPS), and MC3T3-E1 cells were cultured onto the sample discs to evaluate the cell viability, proliferation, differentiation, mineralization, and adhesion. Furthermore, the apatite formation ability and wettability of the composites were analysed. Pure Ti (100Ti) and monolithic Al2O3 (0Ti) were also fabricated by SPS and biological characteristics of the composites were compared with them. Results: The results showed that cell viability to 75Ti (95.0%), 50Ti (87.3%), and 25Ti (63.9%) was superior when compared with 100Ti (42.7%). Pure Al2O3 also caused very high cell viability (89.9%). Furthermore, high cell proliferation was seen at early stage for 50Ti, while the cells exposed to 75Ti proliferated more at late stages. Cell differentiation was approximately equal between different groups, and increased by time. Matrix mineralization was higher on the composite surfaces rather than on 0Ti and 100Ti. Moreover, the cells adhered differently to the surfaces of different biomaterials where more spindle-shaped configuration was found on 100Ti, slightly enlarged cells with dendritic shape and early pseudopodia were observed on 75Ti, and more enlarged cells with long dendritic extensions were found on 0Ti, 25Ti, and 50Ti. The results of EDS analysis showed that both Ca and P deposited on the surfaces of all materials, after 20 days of immersion in SBF. Conclusion: Our in-vitro findings demonstrated that the 75Ti, 50Ti, and 25Ti composites have high potential to be used as load-bearing orthopedic materials.

2.
Mater Sci Eng C Mater Biol Appl ; 102: 200-211, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31146991

ABSTRACT

Alumina-titanium composites have shown good mechanical properties which makes them promising for orthopedic applications. The placement of an orthopedic implant involves an invasive procedure which stimulates a localized inflammatory response causing an acidic environment around the implant. This makes the study on corrosion more critical. Therefore, the aim of the present paper was to study the corrosion behavior of the composites with 75 vol% and 50 vol% Ti content (with alumina balance) fabricated by Spark Plasma Sintering under acidic condition representing inflammation and in two elapsed times (1 h and 1-day) using polarization and electrochemical impedance spectroscopy tests. For comparison, the experiments were also conducted in normal physiological solution after 1 h, and pure Ti (100vol%Ti) was fabricated by the same process and analyzed, similarly. Furthermore, behavior of the samples was studied after 48 days of immersion in the acidic and normal solutions using SEM, ATR-FTIR, AFM, and ICP-OES. The results of corrosion tests showed very good passivation behavior of 100vol%Ti and the composite containing 75vol.%Ti. The superiority of the 75vol.%Ti composite in corrosion characteristics in both solutions was also found. Its corrosion resistance was 20.3 MΩcm2 under the inflammatory condition after 1-day, which was 39% higher than that of 100vol.%Ti under the same condition. The results of SEM indicated both corroded and mineral deposition zones on all materials' surfaces and the ATR-FTIR results revealed additional adsorbed bands related to water adsorption, OH and carbonate groups after immersion. The AFM analysis showed rougher morphology, particularly for 75 vol% Ti where the Rq was increased about 50 nm, and the ICP-OES results indicated 65.87% and 61.94% deposition of solution calcium on 75vol.%Ti and 50vol.%Ti, respectively. The acidic/inflammatory condition influenced the corrosion processes of all materials. Lower pH caused the passivation to occur sooner and the corrosion resistance to be higher.


Subject(s)
Aluminum Oxide/chemistry , Inflammation/pathology , Titanium/chemistry , Calcium/analysis , Corrosion , Dielectric Spectroscopy , Electrochemistry , Hydrogen-Ion Concentration , Solutions , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...