Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Nucl Med ; 38(7): 493-507, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38575814

ABSTRACT

PURPOSE: This study aimed to examine the robustness of positron emission tomography (PET) radiomic features extracted via different segmentation methods before and after ComBat harmonization in patients with non-small cell lung cancer (NSCLC). METHODS: We included 120 patients (positive recurrence = 46 and negative recurrence = 74) referred for PET scanning as a routine part of their care. All patients had a biopsy-proven NSCLC. Nine segmentation methods were applied to each image, including manual delineation, K-means (KM), watershed, fuzzy-C-mean, region-growing, local active contour (LAC), and iterative thresholding (IT) with 40, 45, and 50% thresholds. Diverse image discretizations, both without a filter and with different wavelet decompositions, were applied to PET images. Overall, 6741 radiomic features were extracted from each image (749 radiomic features from each segmented area). Non-parametric empirical Bayes (NPEB) ComBat harmonization was used to harmonize the features. Linear Support Vector Classifier (LinearSVC) with L1 regularization For feature selection and Support Vector Machine classifier (SVM) with fivefold nested cross-validation was performed using StratifiedKFold with 'n_splits' set to 5 to predict recurrence in NSCLC patients and assess the impact of ComBat harmonization on the outcome. RESULTS: From 749 extracted radiomic features, 206 (27%) and 389 (51%) features showed excellent reliability (ICC ≥ 0.90) against segmentation method variation before and after NPEB ComBat harmonization, respectively. Among all, 39 features demonstrated poor reliability, which declined to 10 after ComBat harmonization. The 64 fixed bin widths (without any filter) and wavelets (LLL)-based radiomic features set achieved the best performance in terms of robustness against diverse segmentation techniques before and after ComBat harmonization. The first-order and GLRLM and also first-order and NGTDM feature families showed the largest number of robust features before and after ComBat harmonization, respectively. In terms of predicting recurrence in NSCLC, our findings indicate that using ComBat harmonization can significantly enhance machine learning outcomes, particularly improving the accuracy of watershed segmentation, which initially had fewer reliable features than manual contouring. Following the application of ComBat harmonization, the majority of cases saw substantial increase in sensitivity and specificity. CONCLUSION: Radiomic features are vulnerable to different segmentation methods. ComBat harmonization might be considered a solution to overcome the poor reliability of radiomic features.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Image Processing, Computer-Assisted , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods , Male , Female , Middle Aged , Aged , Positron-Emission Tomography/methods , Support Vector Machine , Adult , Radiomics
2.
Eur Radiol ; 27(11): 4498-4509, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28567548

ABSTRACT

OBJECTIVES: The purpose of this study was to investigate the robustness of different PET/CT image radiomic features over a wide range of different reconstruction settings. METHODS: Phantom and patient studies were conducted, including two PET/CT scanners. Different reconstruction algorithms and parameters including number of sub-iterations, number of subsets, full width at half maximum (FWHM) of Gaussian filter, scan time per bed position and matrix size were studied. Lesions were delineated and one hundred radiomic features were extracted. All radiomics features were categorized based on coefficient of variation (COV). RESULTS: Forty seven percent features showed COV ≤ 5% and 10% of which showed COV > 20%. All geometry based, 44% and 41% of intensity based and texture based features were found as robust respectively. In regard to matrix size, 56% and 6% of all features were found non-robust (COV > 20%) and robust (COV ≤ 5%) respectively. CONCLUSIONS: Variability and robustness of PET/CT image radiomics in advanced reconstruction settings is feature-dependent, and different settings have different effects on different features. Radiomic features with low COV can be considered as good candidates for reproducible tumour quantification in multi-center studies. KEY POINTS: • PET/CT image radiomics is a quantitative approach assessing different aspects of tumour uptake. • Radiomic features robustness is an important issue over different image reconstruction settings. • Variability and robustness of PET/CT image radiomics in advanced reconstruction settings is feature-dependent. • Robust radiomic features can be considered as good candidates for tumour quantification.


Subject(s)
Fluorodeoxyglucose F18 , Head and Neck Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods , Liver Neoplasms/diagnostic imaging , Phantoms, Imaging , Positron Emission Tomography Computed Tomography/methods , Adult , Aged , Algorithms , Female , Humans , Male , Middle Aged , Radiopharmaceuticals
SELECTION OF CITATIONS
SEARCH DETAIL
...