Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(7): e0288260, 2023.
Article in English | MEDLINE | ID: mdl-37437001

ABSTRACT

Today, breast cancer and infectious diseases are very worrying that led to a widespread effort by researchers to discover natural remedies with no side effects to fight them. In the present study, we isolated camel milk protein fractions, casein and whey proteins, and hydrolyzed them using pepsin, trypsin, and both enzymes. Screening of peptides with anti-breast cancer and antibacterial activity against pathogens was performed. Peptides derived from whey protein fraction with the use of both enzymes showed very good activity against MCF-7 breast cancer with cell viability of 7.13%. The separate use of trypsin and pepsin to digest whey protein fraction yielded peptides with high antibacterial activity against S. aureus (inhibition zone of 4.17 ± 0.30 and 4.23 ± 0.32 cm, respectively) and E. coli (inhibition zone of 4.03 ± 0.15 and 4.03 ± 0.05 cm, respectively). Notably, in order to identify the effective peptides in camel milk, its protein sequences were retrieved and enzymatically digested in silico. Peptides that showed both anticancer and antibacterial properties and the highest stability in intestinal conditions were selected for the next step. Molecular interaction analysis was performed on specific receptors associated with breast cancer and/or antibacterial activity using molecular docking. The results showed that P3 (WNHIKRYF) and P5 (WSVGH) peptides had low binding energy and inhibition constant so that they specifically occupied active sites of protein targets. Our results introduced two peptide-drug candidates and new natural food additive that can be delivered to further animal and clinical trials.


Subject(s)
Camelus , Neoplasms , Animals , Protein Hydrolysates/pharmacology , Escherichia coli , Molecular Docking Simulation , Pepsin A , Staphylococcus aureus , Trypsin , Whey Proteins/pharmacology , Peptides/pharmacology , Anti-Bacterial Agents/pharmacology
2.
Data Brief ; 33: 106490, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33209969

ABSTRACT

With an increasing demand of horticultural crops, it is critical to examine environmental damages and exergy impacts and evaluate their potential in producing sustainable products of agricultural systems. As such, environmental midpoints of five dominated horticultural products, namely, hazelnut, watermelon, tea, kiwifruit, and citrus, are scrutinized using life cycle assessment approach in Guilan province, Iran. Each crop is considered under a separate scenario and 10 tons of yield is determined as the functional unit. ReCiPe2016, as a new approach, is used for computation of 17 midpoints. Moreover, a weighting analysis is undertaken to find the share of each input in environmental damages with dimensionless notation. In the second part of this paper, cumulative exergy demand (CExD) is applied for evaluation of energy forms in each scenario. Data are presented under two sectors in the main article. The first part is midpoint results of each crop and the second part depicts energy forms of CExD with input rate in each category. Besides, the supplementary files contain raw material of each input, midpoint physical rate, share of each input to contribute midpoint, raw data of weighted damages and share of each input in total weighted damages.

3.
Environ Sci Pollut Res Int ; 27(28): 35272-35283, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32592049

ABSTRACT

The current paper aimed at evaluating and optimizing the efficiency of energy use and mitigation of environmental pollution by minimizing the emissions and intensity of greenhouse gases (GHG) for farm production systems in Mashhad, Iran. The results indicated that the total values of consumed energy were equal to 28,648, 38,479, and 43,490 MJha-1 for barley, canola, and forage corn, respectively. The highest rate of the consumed energy for all crops belonged to irrigation electricity, diesel fuel, and nitrogen consumption. The highest and lowest energy efficiencies were respectively achieved from forage corn and canola, while barley production led to the lowest GHG emissions. The estimation of GHG intensity demonstrated that canola with 53% took up the highest intensity, which was followed by barley (30%) and forage corn (17%). Since the intensity of GHG takes into account the amount of energy produced by each crop per hectare, this index is more suitable than GHG emissions for assessing environmental pollution. The results of optimal responses of the multiple goal programming (MGP) model revealed that the optimum evaluated cultivation areas (for meeting the goals of the study) for barley and forage corn were 10,088 and 3256 ha, respectively, while the MGP model generally eliminates canola from the cultivation plan. On the other hand, the plan proposed by the MGP model increases the total energy efficiency from 103,625 for the current systems to 105,169 for the optimized systems per year. Furthermore, the emissions and intensity of GHG were reduced by the model to 311,786 kgCO2eq and 10 kgCO2eq MJoutput-1 per year, respectively.


Subject(s)
Greenhouse Gases , Crops, Agricultural , Farms , Greenhouse Effect , Iran
4.
J Oleo Sci ; 69(4): 337-346, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32132350

ABSTRACT

The growing global demand for fossil fuels and considerable environmental threats and risks have prompted researchers to launch investigations over some renewable energy sources in recent years. Especially biodiesel and ethanol have been considered as major alternative fuels as they are derived from renewable sources. These fuels are well oxygenated and therefore have a great potential to reduce emissions. Biodiesel, which is chemically derived from edible oils or animal fats by transesterification reaction, is esters of long-chain saturated/unsaturated fatty acids and can be an important alternative fuel source to consider for the vehicle. It can offer desirable features to diesel engines, and internal combustion engines (ICEs) in particular. The present study aims at determining and assessing the effect of the engine's load and speed as well as various ratios of diesel and biodiesel fuels blending on the emissions of pollutants from the OM 314 diesel engine. Design Expert 11 statistical software was used. Second-order models obtained using response surface methodology (RSM) to predict the effect of input variables on response surfaces were statistically significant at an alpha level of 1. Following an increase in the percentage of biodiesel compared to pure diesel fuel, the HC (Hydrocarbons) emission rate decreased. According to the optimization results, the lowest HC emission rate (33.52 ppm), and the least NOX emission rate occurs when using 8.82% biodiesel. The lowest HC emission rate was observed after using pure biodiesel fuel. Following an increase in the percentage of biodiesel in the blended fuel, the NOX emission rate increased, while the lowest emission rate was observed after using pure diesel fuel. Engine smoke flow rate decreased after increasing the percentages of biodiesel in blended fuel compared to diesel fuel. A higher percentage of biodiesel was considered as the most effective way to reduce the rate of smoke opacity. According to the multi-objective optimization (MOO) results, the lowest HC, and NOX emission rates and the rate of smoke opacity was observed for blended fuel "D32.47B67.53" with the Desirability of 60% under applying a load of 41.36% and rotational speed of 1383 rpm.


Subject(s)
Biofuels , Gasoline , Vehicle Emissions/prevention & control , Esterification , Fatty Acids , Hydrocarbons , Nitric Oxide
SELECTION OF CITATIONS
SEARCH DETAIL
...