Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Immunopharmacol Immunotoxicol ; 37(2): 171-84, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25689950

ABSTRACT

Traditionally venoms are used from thousands of years to treat pain, inflammation, and arthritis. In Ayurveda "Suchika Voron" and "Shodhona" were practiced against pain. In the present study, venom composition of the Indian honeybee Apis florea (AF), Apis dorsata (AD), and Apis cerana indica (AC) were analyzed using electrophoresis (SDS-PAGE). This venom analysis was used to shed light upon the correlation in structure and the venom composition among the three species in Indian fields. Among the three species, Indian Apis dorsata bee venom (ADBV) is evaluated for an anti-inflammatory, anti-nociceptive activity, and antiarthritic activity in different animal models. The effect of ADBV is revealed for its anti-arthritic activity in the FCA- and CIA-induced arthritis model in male Wistar rats. The immunosuppressant action of ADBV was studied by hemagglutination antibody titer. It has been found that ADBV possesses anti-inflammatory and antinociceptive activities. In FCA- and CIA-induced arthritis, ADBV able to decrease rheumatoid factor, pain perception parameters, C-reactive protein, erythrocytes sedimentation rate, urinary hydroxyproline, serum transaminase level, and serum nitric oxide level when compared with diseased control arthritic rats. IL-6, TNF-α level was found to be decrease by ADBV treatment in collagen induced arthritis model. Thus this study confirmed the scientific validation behind utilization of venom in Indian Apis dorsata bees in arthritis and inflammatory diseases which has been not reported till date.


Subject(s)
Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antirheumatic Agents/therapeutic use , Bee Venoms/therapeutic use , Analgesics/isolation & purification , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antirheumatic Agents/isolation & purification , Antirheumatic Agents/pharmacology , Arthritis, Experimental/diagnostic imaging , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Bee Venoms/isolation & purification , Bee Venoms/pharmacology , Bees , Drug Evaluation, Preclinical/methods , Edema/diagnostic imaging , Edema/drug therapy , Edema/pathology , Female , Male , Mice , Pain Measurement/drug effects , Pain Measurement/methods , Radiography , Rats , Rats, Wistar
2.
Indian J Pharm Sci ; 73(6): 601-7, 2011 Nov.
Article in English | MEDLINE | ID: mdl-23112392

ABSTRACT

In type 2 Diabetes, oxidative stress plays an important role in development and aggregation of insulin resistance. In the present study, long term administration of the dexamethasone led to the development of insulin resistance in mice. The effect of thiazolidinediones pioglitazone and rosiglitazone, with melatonin on dexamethasone-induced insulin resistance was evaluated in mice. Insulin resistant mice were treated with combination of pioglitazone (10 mg/kg/day, p.o.) or rosiglitazone (5 mg/kg/day, p.o.) with melatonin 10 mg/kg/day p.o. from day 7 to day 22. In the biochemical parameters, the serum glucose, triglyceride levels were significantly lowered (P<0.05) in the combination groups as compared to dexamethasone treated group as well as with individual groups of pioglitazone, rosiglitazone, and melatonin. There was also, significant increased (P<0.05) in the body weight gain in combination treated groups as compared to dexamethasone as well as individual groups. The combination groups proved to be effective in normalizing the levels of superoxide dismutase, catalase, glutathione reductase and lipid peroxidation in liver homogenates may be due to antioxidant effects of melatonin and decreased hyperglycemia induced insulin resistance by thiazolidinediones. The glucose uptake in the isolated hemidiaphragm of mice was significantly increased in combination treated groups (PM and RM) than dexamethasone alone treated mice as well as individual (pioglitazone, rosiglitazone, melatonin) treated groups probably via increased in expression of GLUT-4 by melatonin and thiazolidinediones as well as increased in insulin sensitivity by thiazolidinediones. Hence, it can be concluded that combination of pioglitazone and rosiglitazone, thiazolidinediones, with melatonin may reduces the insulin resistance via decreased in oxidative stress and control on hyperglycemia.

SELECTION OF CITATIONS
SEARCH DETAIL
...