Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Rep ; 13(1): 11147, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429845

ABSTRACT

To develop a simplified magnetic resonance imaging method (MRI) to assess total adipose tissue (AT) and adipose tissue free mass (ATFM) from three single MRI slices in people with overweight/obesity in order to implement body composition follow-up in a clinical research setting. Body composition of 310 participants (70 women and 240 men, age: 50.8 ± 10.6 years, BMI: 31.3 ± 5.6 kg.m-2) was assessed with 3 single slices (T6-T7, L4-L5 and at mid-thigh) MRI. Multiple regression analysis was used to develop equations predicting AT and ATFM from these three single slices. Then we implemented a longitudinal phase consisting in a 2-month exercise training program during which we tested the sensitivity of these equations in a subgroup of participants with overweight/obesity (n = 79) by comparing the exercise-induced variations between predicted and measured AT and ATFM. The following equations: total AT = - 12.74105 + (0.02919 × age) + (4.27634 × sex (M = 0, F = 1)) + (0.22008 × weight) + (26.92234 × AT T6-T7) + (23.70142 × AT L4-L5) + (37.94739 × AT mid-thigh) and total ATFM = - 33.10721 + (- 0.02363 × age) + (- 3.58052 × sex (M = 0, F = 1)) + (30.02252 × height) + (0.08549 × weight) + (11.36859 × ATFM T6-T7) + (27.82244 × ATFM L4-L5) + (58.62648 × ATFM mid-thigh) showed an excellent prediction (adjusted R2 = 97.2% and R2 = 92.5%; CCC = 0.986 and 0.962, respectively). There was no significant difference between predicted and measured methods regarding the AT variations (- 0.07 ± 2.02 kg, p = 0.70) and the ATFM variations (0.16 ± 2.41 kg, p = 0.49) induced by 2-months of exercise training. This simplified method allows a fully accurate assessment of the body composition of people with obesity in less than 20 min (10 min for images acquisition and analysis, respectively), useful for a follow-up.


Subject(s)
Obesity , Overweight , Male , Female , Humans , Adult , Middle Aged , Overweight/diagnostic imaging , Obesity/diagnostic imaging , Magnetic Resonance Imaging , Thigh , Body Composition
2.
Respir Physiol Neurobiol ; 315: 104096, 2023 09.
Article in English | MEDLINE | ID: mdl-37355056

ABSTRACT

PURPOSE: We aimed to investigate respiratory rate variability (RRV) and tidal volume (Vt) variability during exposure to normobaric hypoxia (i.e., reduction in the fraction of inspired oxygen - FiO2), and the association of the changes in RRV and Vt variability with the changes in pulse oxygen saturation (SpO2). METHODS: Thirty healthy human participants (15 females) were exposed to: (1) 15-min normoxia, (2) 10-min hypoxia simulating 2200 m, (3) 10-min hypoxia simulating 4000 m, (4) 10-min hypoxia simulating 5000 m, (5) 15-min recovery in normoxia. Linear regression modelling was applied with SpO2 (dependent variable) and the changes in RRV and Vt variability (independent variables), controlling for FiO2, age, sex, changes in heart rate (HR), changes in HR variability (HRV), and changes in minute ventilation (VE). RESULTS: When modelling breathing parameter variability as root-mean-square standard deviation (RMSSD), a significant independent association of the changes in RRV with the changes in SpO2 was found (B = -4.3e-04, 95% CI = -8.3e-04/-2.1e-05, p = 0.04). The changes in Vt variability showed no significant association with the changes in SpO2 (B = -1.6, 95% CI = -5.5/2.4, p = 0.42). When modelling parameters variability as SD, a significant independent association of the changes in RRV with the changes in SpO2 was found (B = -8.2e-04, 95% CI = -1.5e-03/-9.4e-05, p = 0.03). The changes in Vt variability showed no significant association with the changes in SpO2 (B=1.4, 95% CI = -5.8/8.6, p = 0.69). CONCLUSION: Higher RRV is independently associated with lower SpO2 during acute hypoxic exposure, while Vt variability parameters are not. Therefore, RRV may be a potentially interesting parameter to characterize individual responses to acute hypoxia.


Subject(s)
Hypoxia , Respiration , Female , Humans , Pilot Projects , Respiratory Rate , Heart Rate/physiology , Oxygen
3.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R700-R709, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36121143

ABSTRACT

Combining moderate-intensity exercise training with hypoxic exposure may induce larger improvement in cardiometabolic risk factors and health status compared with normoxic exercise training in obesity. Considering the greater cardiometabolic effects of high-intensity intermittent training (HIIT), we hypothesized that hypoxic high-volume HIIT (H-HIIT) would induce greater improvement in cardiorespiratory fitness and health status despite a lower absolute training workload than normoxic HIIT (N-HIIT) in overweight/obesity. Thirty-one subjects were randomized to an 8-week H-HIIT [10 male and 6 female; age: 51.0 ± 8.3 years; body mass index (BMI): 31.5 ± 4 kg·m-2] or N-HIIT (13 male and 2 female; age: 52.0 ± 7.5 years; BMI: 32.4 ± 4.8 kg·m-2) program (3 sessions/week; cycling at 80% or 100% of maximal workload for H-HIIT and N-HIIT, respectively; target arterial oxygen saturation for H-HIIT 80%, [Formula: see text] ∼0.12, i.e., ∼4,200 meters above sea level). Before and after training, the following evaluations were performed: incremental maximal and submaximal cycling tests, pulse-wave velocity, endothelial function, fasting glucose, insulin, lipid profile, and body composition. Maximal exercise (V̇o2peak: H-HIIT +14.2% ± 8.3% vs. N-HIIT +12.1 ± 8.8%) and submaximal (ventilatory thresholds) capacity and exercise metabolic responses (power output at the crossover point and at maximal fat oxidation rate) increased significantly in both groups, with no significant difference between groups and without other cardiometabolic changes. H-HIIT induced a greater peak ventilatory response (ANOVA group × time interaction F = 7.4, P = 0.016) compared with N-HIIT. In overweight/obesity, the combination of normobaric hypoxia and HIIT was not superior for improving cardiorespiratory fitness improvement compared with HIIT in normoxia, although HIIT in hypoxia was performed at a lower absolute training workload.


Subject(s)
Cardiorespiratory Fitness , Cardiovascular Diseases , High-Intensity Interval Training , Male , Female , Humans , Adult , Middle Aged , Overweight/therapy , Exercise Therapy/adverse effects , Obesity/diagnosis , Obesity/therapy , Obesity/complications , Cardiorespiratory Fitness/physiology , Insulin , Cardiovascular Diseases/etiology , Hypoxia/complications , Lipids , Glucose
4.
J Biomed Opt ; 26(1)2021 01.
Article in English | MEDLINE | ID: mdl-33515218

ABSTRACT

SIGNIFICANCE: Oxygenation is one of the skin tissue physiological properties to follow for patient care management. Furthermore, long-term monitoring of such parameters is needed at the patient bed as well as outside the hospital. Diffuse reflectance spectroscopy has been widely used for this purpose. AIM: The aim of the study is to propose a low-cost system for the long-term measurement of skin physiological parameters in contact. APPROACH: We have developed a low-cost, wearable, CMOS-based device. We propose an original method for processing diffuse reflectance data to calculate the tissue oxygen saturation (StO2). RESULTS: We tested the device for the assessment of tissue oxygenation during a first-in-human clinical trial that took place at the Grenoble University Hospital France. CONCLUSIONS: The results of this clinical trial show a good accordance between our sensor and commercial devices used a reference.


Subject(s)
Wearable Electronic Devices , Humans , Skin/diagnostic imaging , Spectrum Analysis
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4640-4643, 2020 07.
Article in English | MEDLINE | ID: mdl-33019028

ABSTRACT

The development of wearable devices for healthcare monitoring is of primary interest, in particular for homecare applications. But it is challenging to develop an evaluation framework to test and optimize such a device by following a non-invasive protocol. As well established reference devices do exist for capnometry, we propose a protocol to evaluate and compare the performance of the transcutaneous carbon dioxide monitoring wristband that we develop. We present here this protocol, the signal processing pipeline and the data analysis based on signal alignment and intercorrelation study, and the first results on a cohort of 13 healthy subjects. This test allows demonstrating the influence of the device response time and of the carbon dioxide content in the ambient air.Clinical Relevance-The protocol described here allows to test and optimize the new device in clinical conditions simulating hypo and hypercapnia variations on a subject at rest, as it would be the case at home to monitor the health status of chronic respiratory patients, and to compare the performances with reference devices. A strong intercorrelation greater than 0.8 has been observed in 5 healthy subjects out of 13 and factors influencing the intercorrelation are suggested.


Subject(s)
Carbon Dioxide , Hypercapnia , Capnography , Healthy Volunteers , Humans , Monitoring, Physiologic
SELECTION OF CITATIONS
SEARCH DETAIL
...