Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 235: 1007-1014, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31561289

ABSTRACT

Electro-peroxone is a novel advanced oxidation process that surpasses ozonation or peroxone because of its advantages. In this technology, combining ozone and hydrogen peroxide generated electrochemically leads to the production of hydroxyl radicals, which are the strongest oxidizing agents. In this study, a cylindrical reactor with a continuous circular flow using novel arrangements of electrodes was used to examine the effects of variant parameters on dye removal efficiency. Acid Orange 7 (C16H11N2NaO4S) served as an indicator pollutant. Based on overall energy consumption and energy consumption per dye removed weight, electro-peroxone not only has proper efficiency at high dye concentrations, it also has the least energy consumption per dye removed weight; 53 KWh kg-1 is achieved for 500 mg L-1 initial dye concentration at 99% removal efficiency after 40 min. The results show that at the optimum condition of [Dye] = 500 mg L-1, pH = 7.7, applied current = 0.5 A, O3 rate = 1 L min-1, and [Na2SO4] = 0.1 M, dye is removed completely after 90 min and COD and TOC removal is 99% and 90%, respectively. LC-MS results also showed that AO7 initially was converted to more toxic compounds than AO7 like benzoic acid but finally linear acidic intermediate with less toxicity such as fumaric acid was formed.


Subject(s)
Azo Compounds/chemistry , Benzenesulfonates/chemistry , Electrodes , Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemistry , Oxidants/chemistry , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Azo Compounds/analysis , Benzenesulfonates/analysis , Electrolysis , Oxidation-Reduction , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...