Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cell Mol Neurobiol ; 43(8): 3815-3832, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37665407

ABSTRACT

Inflammatory biomarkers have been very useful in detecting and monitoring inflammatory processes along with providing helpful information to select appropriate therapeutic strategies. C-reactive protein (CRP) is a nonspecific, but quite useful medical acute inflammatory biomarker and is associated with persistent chronic inflammatory processes. Several studies suggest that different levels of CRP are correlated with neurological disorders such as Alzheimer's disease (AD). However, dynamics of CRP levels have also been observed in virus/bacterial-related infections leading to inflammatory responses and this triggers mTOR-mediated pathways for neurodegeneration diseases. The biophysical structural transition from CRP to monomeric CRP (mCRP) and the significance of the ratio of CRP levels on the onset of symptoms associated with inflammatory response have been discussed. In addition, mTOR inhibitors act as immunomodulators by downregulating the expression of viral infection and can be explored as a potential therapy for neurological diseases.


Subject(s)
C-Reactive Protein , Neurodegenerative Diseases , Humans , C-Reactive Protein/chemistry , C-Reactive Protein/metabolism , Inflammation/metabolism , Biomarkers , TOR Serine-Threonine Kinases
2.
Subcell Biochem ; 98: 3-14, 2022.
Article in English | MEDLINE | ID: mdl-35378700

ABSTRACT

Eukaryotic cells are capable of internalizing different types of cargo by plasma membrane ruffling and forming vesicles in a process known as endocytosis. The most extensively characterized endocytic pathways are clathrin-coated pits, lipid raft/caveolae-mediated endocytosis, phagocytosis, and macropinocytosis. Macropinocytosis is unique among all the endocytic processes due to its nonselective internalization of extracellular fluid, solutes, and membrane in large endocytic vesicles known as macropinosomes with unique susceptibility toward Na+/H+ exchanger inhibitors. Range of cell types capable of macropinocytosis and known to play important role in different physiological processes, which include antigen presentation, nutrient sensing, migration, and signaling. Understanding the physiological function of macropinocytosis will be helpful in filling the gaps in our knowledge and which can be exploited to develop novel therapeutic targets. In this chapter, we discuss the different molecular mechanisms that initiate the process of macropinocytosis with special emphasis on proteins involved and their diversified role in different cell types.


Subject(s)
Endocytosis , Pinocytosis , Endocytosis/physiology , Endosomes , Membrane Microdomains/metabolism , Phagocytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...