Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(2)2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30669269

ABSTRACT

Absorbable metals have potential for making in-demand rigid temporary stents for the treatment of urinary tract obstruction, where polymers have reached their limits. In this work, in vitro degradation behavior of absorbable zinc alloys in artificial urine was studied using electrochemical methods and advanced surface characterization techniques with a comparison to a magnesium alloy. The results showed that pure zinc and its alloys (Zn⁻0.5Mg, Zn⁻1Mg, Zn⁻0.5Al) exhibited slower corrosion than pure magnesium and an Mg⁻2Zn⁻1Mn alloy. The corrosion layer was composed mostly of hydroxide, carbonate, and phosphate, without calcium content for the zinc group. Among all tested metals, the Zn⁻0.5Al alloy exhibited a uniform corrosion layer with low affinity with the ions in artificial urine.

2.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 195-206, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27770881

ABSTRACT

With its proven biocompatibility and excellent mechanical properties, iron is an excellent source material for clinical cardiac and vascular applications. However, its relatively low degradation rate limits its use for the healing and remodeling of diseased blood vessels. To address these issues, a multi-purpose fabrication process to develop a bilayer alloy composed of electroformed iron (E-Fe) and iron-phosphorus (Fe-P) was employed. Bilayers of Fe/Fe-P were produced in an electrolytic bath. The effects of electrolyte chemical composition and deposition current density (idep) on layer structure and chemical composition were assessed by scanning electron microscopy, electron probe microanalysis, X-ray diffraction and X-ray photoelectron spectroscopy. The corrosion rate was determined by potentiodynamic polarization tests. The bilayers showed an increasing amount of P with increasing NaH2PO4·H2O in the electrolyte. Fe-P structure became finer for higher P amounts. Potentiodynamic polarization tests revealed that the corrosion rate was strongly influenced by deposition conditions. For a P amount of ~2 wt.%, the corrosion rate was 1.46mm/year, which confirms the potential of this material to demonstrate high mechanical properties and a suitable corrosion rate for biomedical applications.


Subject(s)
Biocompatible Materials/chemistry , Electricity , Electrolytes/chemistry , Electroplating/methods , Iron/chemistry , Phosphorus/chemistry , Corrosion , Electron Probe Microanalysis , Photoelectron Spectroscopy , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...