Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38930169

ABSTRACT

This work uses the direct current magnetron sputtering (DCMS) of equi-atomic (AlTiZrHfTa) and Si targets in dynamic sweep mode to deposit nano-layered (AlTiZrHfTa)Nx/SiNx refractory high-entropy coatings (RHECs). Transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are used to investigate the effect of Si addition on the oxidation behavior of the nano-layered coatings. The Si-free nitride coating exhibits FCC structure and columnar morphology, while the Si-doped nitride coatings present a FCC (AlTiZrHfTa)N/amorphous-SiNx nano-layered architecture. The hardness decreases from 24.3 ± 1.0 GPa to 17.5 ± 1.0 GPa because of the nano-layered architecture, whilst Young's modulus reduces from 188.0 ± 1.0 GPa to roughly 162.4 ± 1.0 GPa. By increasing the thickness of the SiNx nano-layer, kp values decrease significantly from 3.36 × 10-8 g2 cm-4 h-1 to 6.06 × 10-9 g2 cm-4 h-1. The activation energy increases from 90.8 kJ·mol-1 for (AlTiZrHfTa)Nx nitride coating to 126.52 kJ·mol-1 for the (AlTiZrHfTa)Nx/SiNx nano-layered coating. The formation of a FCC (AlTiZrHfTa)-Nx/a-SiNx nano-layered architecture results in the improvement of the resistance to oxidation at high temperature.

2.
Nanoscale ; 16(5): 2289-2294, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38164662

ABSTRACT

Control of the optical properties of a nanoparticle (NP) through its structural changes underlies optical data processing, dynamic coloring, and smart sensing at the nanometer scale. Here, we report on the concept of controlling the light scattering by a NP through mixing of weakly miscible chemical elements (Fe and Au), supporting a thermal-induced phase transformation. The transformation corresponds to the transition from a homogeneous metastable solid solution phase of the (Fe,Au) NP towards an equilibrium biphasic Janus-type NP. We demonstrate that the phase transformation is thermally activated by laser heating up to a threshold of 800 °C (for NPs with a size of hundreds of nm), leading to the associated changes in the light scattering and color of the NP. The results thereby pave the way for the implementation of optical sensors triggered by a high temperature at the nanometer scale via NPs based on metal alloys.

3.
Nat Commun ; 14(1): 2483, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37120587

ABSTRACT

Despite recent advances in exfoliated vdW ferromagnets, the widespread application of 2D magnetism requires a Curie temperature (Tc) above room temperature as well as a stable and controllable magnetic anisotropy. Here we demonstrate a large-scale iron-based vdW material Fe4GeTe2 with the Tc reaching ~530 K. We confirmed the high-temperature ferromagnetism by multiple characterizations. Theoretical calculations suggested that the interface-induced right shift of the localized states for unpaired Fe d electrons is the reason for the enhanced Tc, which was confirmed by ultraviolet photoelectron spectroscopy. Moreover, by precisely tailoring Fe concentration we achieved arbitrary control of magnetic anisotropy between out-of-plane and in-plane without inducing any phase disorders. Our finding sheds light on the high potential of Fe4GeTe2 in spintronics, which may open opportunities for room-temperature application of all-vdW spintronic devices.

4.
Nanoscale Adv ; 4(21): 4658-4668, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36341296

ABSTRACT

Mechanical energy harvesting using piezoelectric nanogenerators (PNGs) offers an attractive solution for driving low-power portable devices and self-powered electronic systems. Here, we designed an eco-friendly and flexible piezocomposite nanogenerator (c-PNG) based on H2(Zr0.1Ti0.9)3O7 nanowires (HZTO-nw) and Ba0.85Ca0.15Zr0.10Ti0.90O3 multipods (BCZT-mp) as fillers and polylactic acid (PLA) as a biodegradable polymer matrix. The effects of the applied stress amplitude, frequency and pressing duration on the electric outputs in the piezocomposite nanogenerator (c-PNG) device were investigated by simultaneous recording of the mechanical input and the electrical outputs. The fabricated c-PNG shows a maximum output voltage, current and volumetric power density of 11.5 V, 0.6 µA and 9.2 mW cm-3, respectively, under cyclic finger imparting. A high-pressure sensitivity of 0.86 V kPa-1 (equivalent to 3.6 V N-1) and fast response time of 45 ms were obtained in the dynamic pressure sensing. Besides this, the c-PNG demonstrates high-stability and durability of the electrical outputs for around three months, and can drive commercial electronics (charging capacitor, glowing light-emitting diodes and powering a calculator). Multi-physics simulations indicate that the presence of BCZT-mp is crucial in enhancing the piezoelectric response of the c-PNG. Accordingly, this work reveals that combining 1D and 3D fillers in a polymer composite-based PNG could be beneficial in improving the mechanical energy harvesting performances in flexible piezoelectric nanogenerators for application in electronic skin and wearable devices.

5.
RSC Adv ; 12(34): 21940-21945, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36043076

ABSTRACT

A joint experimental and theoretical study is presented to reveal the influence of nitrogen doping on the optical and electrical properties of NiO thin films. Nitrogen addition can significantly enhance the subgap absorption. The molecular state of nitrogen (N2) has been identified in these doped thin films by electron energy loss spectroscopy.

6.
ACS Appl Mater Interfaces ; 13(26): 30874-30884, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34157227

ABSTRACT

This study reports a strong ME effect in thin-film composites consisting of nickel, iron, or cobalt foils and 550 nm thick AlN films grown by PE-ALD at a (low) temperature of 250 °C and ensuring isotropic and highly conformal coating profiles. The AlN film quality and the interface between the film and the foils are meticulously investigated by means of high-resolution transmission electron microscopy and the adhesion test. An interface (transition) layer of partially amorphous AlxOy/AlOxNy with thicknesses of 10 and 20 nm, corresponding to the films grown on Ni, Fe, and Co foils, is revealed. The AlN film is found to be composed of a mixture of amorphous and nanocrystalline grains at the interface. However, its crystallinity is improved as the film grew and shows a highly preferred (002) orientation. High self-biased ME coefficients (αME at a zero-bias magnetic field) of 3.3, 2.7, and 3.1 V·cm-1·Oe-1 are achieved at an off-resonance frequency of 46 Hz in AlN/Ni thin-film composites with different Ni foil thicknesses of 7.5, 15, and 30 µm, respectively. In addition, magnetoelectric measurements have also been carried out in composites made of 550 nm thick films grown on 12.5 µm thick Fe and 15 µm thick Co foils. The maximum magnetoelectric coefficients of AlN/Fe and AlN/Co composites are 0.32 and 0.12 V·cm-1·Oe-1, measured at 46 Hz at a bias magnetic field (Hdc) of 6 and 200 Oe, respectively. The difference of magnetoelectric transducing responses of each composite is discussed according to interface analysis. We report a maximum delivered power density of 75 nW/cm3 for the AlN/Ni composite with a load resistance of 200 kΩ to address potential energy harvesting and electromagnetic sensor applications.

7.
Article in English | MEDLINE | ID: mdl-33539292

ABSTRACT

Batteryless, wireless, and packageless acoustic wave sensors are particularly desirable for harsh high-temperature environments. In this letter, an acoustic wave sensor based on a lithium niobate (Y + 128° cut, abbreviated LN-Y128) substrate with a buried platinum interdigital transducer (IDT) in an aluminum nitride (AlN) overlayer is investigated. Previously, it was demonstrated theoretically that due to the specific properties of LN-Y128, Rayleigh-type guided waves can propagate at the AlN/IDT(Pt)/LN-Y128 interface. Here, this structure is, for the first time, studied experimentally, including the growth and properties of the AlN layer onto irregular platinum IDTs. Both Shear Horizontal and Rayleigh-type waves have been identified after the AlN deposition and the velocities are consistent with the fitted SDA-FEM-SDA (a combination of finite element modeling with spectral domain analysis) simulations. Electrical measurements with a surface perturbation and temperature measurements show that the AlN/IDT(Pt)/LN-Y128 bilayer structure is promising as a packageless high-temperature sensor.

8.
Adv Mater ; 33(12): e2007047, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33604960

ABSTRACT

Spintronics exploit spin-orbit coupling (SOC) to generate spin currents, spin torques, and, in the absence of inversion symmetry, Rashba and Dzyaloshinskii-Moriya interactions. The widely used magnetic materials, based on 3d metals such as Fe and Co, possess a small SOC. To circumvent this shortcoming, the common practice has been to utilize the large SOC of nonmagnetic layers of 5d heavy metals (HMs), such as Pt, to generate spin currents and, in turn, exert spin torques on the magnetic layers. Here, a new class of material architectures is introduced, excluding nonmagnetic 5d HMs, for high-performance spintronics operations. Very strong current-induced torques exerted on single ferrimagnetic GdFeCo layers, due to the combination of large SOC of the Gd 5d states and inversion symmetry breaking mainly engineered by interfaces, are demonstrated. These "self-torques" are enhanced around the magnetization compensation temperature and can be tuned by adjusting the spin absorption outside the GdFeCo layer. In other measurements, the very large emission of spin current from GdFeCo, 80% (20%) of spin anomalous Hall effect (spin Hall effect) symmetry is determined. This material platform opens new perspectives to exert "self-torques" on single magnetic layers as well as to generate spin currents from a magnetic layer.

9.
Water Sci Technol ; 83(2): 309-321, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33504696

ABSTRACT

In Agadir, a water-scarce Moroccan region, municipal and industrial wastewater is tertiary-treated to be reused in golf courses. Wastewater reuse has been constrained by severe clogging of emitters, which caused technical and financial problems. This study aimed to perform an in-depth characterization of the treated wastewater (TWW) in relation to its susceptibility to cause clogging, and to assess the capacity of an aeration post-treatment to reduce the clogging potential. The post-treatment consisted of injecting different airflows (0-33 L/(h Lreactor) into the TWW. The structural, morphological and elemental composition of the clogging matter collected in the irrigation pipeline was characterized using scanning electron microscopy, scanning transmission electron microscopy, X-ray diffraction and X-ray energy dispersive spectroscopy. The 15-day aeration post-treatment at 16.5 L/(h Lreactor) presented the best cost-benefit ratio. Organic matter was totally degraded. Calcium was reduced by 9%, bicarbonates by 54%. The analysis of the deposits induced by the aeration post-treatment revealed a relevant decrease of the major constituents of the clogging deposits found in the irrigation pipeline. The results show the effectiveness of post-aeration in biodegrading residual organic matter and precipitating several salts, thus reducing the clogging potential.


Subject(s)
Agricultural Irrigation , Wastewater
10.
Sensors (Basel) ; 20(16)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824582

ABSTRACT

Scandium aluminum nitride (ScxAl1-xN) films are currently intensively studied for surface acoustic waves (SAW) filters and sensors applications, because of the excellent tradeoff they present between high SAW velocity, large piezoelectric properties and wide bandgap for the intermediate compositions with an Sc content between 10 and 20%. In this paper, the growth of Sc0.09Al0.91N and Sc0.18Al0.82N films on sapphire substrates by sputtering method is investigated. The plasma parameters were optimized, according to the film composition, in order to obtain highly-oriented films. X-ray diffraction rocking-curve measurements show a full width at half maximum below 1.5°. Moreover, high-resolution transmission electron microscopy investigations reveal the epitaxial nature of the growth. Electrical characterizations of the Sc0.09Al0.91N/sapphire-based SAW devices show three identified modes. Numerical investigations demonstrate that the intermediate compositions between 10 and 20% of scandium allow for the achievement of SAW devices with an electromechanical coupling coefficient up to 2%, provided the film is combined with electrodes constituted by a metal with a high density.

11.
Nanomaterials (Basel) ; 10(7)2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32605237

ABSTRACT

High-quality graphene is an especially promising carbon nanomaterial for developing nanofluids for enhancing heat transfer in fluid circulation systems. We report a complete study on few layer graphene (FLG) based nanofluids, including FLG synthesis, FLG-based nanofluid preparation, and their thermal conductivity. The FLG sample is synthesized by an original mechanical exfoliation method. The morphological and structural characterization are investigated by both scanning and transmission electron microscopy and Raman spectroscopy. The chosen two-step method involves the use of thee nonionic surfactants (Triton X-100, Pluronic® P123, and Gum Arabic), a commercial mixture of water and propylene glycol and a mass content in FLG from 0.05 to 0.5%. The thermal conductivity measurements of the three FLG-based nanofluid series are carried out in the temperature range 283.15-323.15 K by the transient hot-wire method. From a modeling analysis of the nanofluid thermal conductivity behavior, it is finally shown that synergetic effects of FLG nanosheet size and thermal resistance at the FLG interface both have significant impact on the evidenced thermal conductivity enhancement.

12.
Adv Mater ; 32(26): e1908357, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32452576

ABSTRACT

Engineering of magnetic materials for developing better spintronic applications relies on the control of two key parameters: the spin polarization and the Gilbert damping, responsible for the spin angular momentum dissipation. Both of them are expected to affect the ultrafast magnetization dynamics occurring on the femtosecond timescale. Here, engineered Co2 MnAlx Si1- x Heusler compounds are used to adjust the degree of spin polarization at the Fermi energy, P, from 60% to 100% and to investigate how they correlate with the damping. It is experimentally demonstrated that the damping decreases when increasing the spin polarization from 1.1 × 10-3 for Co2 MnAl with 63% spin polarization to an ultralow value of 4.6 × 10-4 for the half-metallic ferromagnet Co2 MnSi. This allows the investigation of the relation between these two parameters and the ultrafast demagnetization time characterizing the loss of magnetization occurring after femtosecond laser pulse excitation. The demagnetization time is observed to be inversely proportional to 1 - P and, as a consequence, to the magnetic damping, which can be attributed to the similarity of the spin angular momentum dissipation processes responsible for these two effects. Altogether, the high-quality Heusler compounds allow control over the band structure and therefore the channel for spin angular momentum dissipation.

13.
ACS Omega ; 5(10): 4770-4777, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32201762

ABSTRACT

Designing and manufacturing multifunctional nanoparticles (NPs) are of considerable interest for both academic and industrial research. Among NPs used in this field, iron oxide NPs show low toxicity compared to metallic ones and are thus of high interest for biomedical applications. In this work, superparamagnetic Fe3-δO4-based core/shell NPs were successfully prepared and characterized by the combination of different techniques, and their physical properties were investigated. We demonstrate the efficiency of the layer-by-layer process to graft polyelectrolytes on the surface of iron oxide NPs. The influence of the polyelectrolyte chain configuration on the magnetic properties of the Fe3-δO4/polymer core/shell NPs was enlightened. The simple and fast process described in this work is efficient for the grafting of polyelectrolytes from surfaces, and thus, derived Fe3-δO4 NPs display both the physical properties of the core and of the macromolecular shell. Finally, the cytotoxicity toward the human THP-1 monocytic cell line of the core/shell NPs was assessed. The results showed that the polymer-capped Fe3-δO4 NPs exhibited almost no toxicity after 24 h of exposure at concentrations up to 25 µg mL-1. Our results show that these smart superparamagnetic nanocarriers with stealth properties are promising for applications in multimodal cancer therapy, including drug delivery.

14.
J Nanobiotechnology ; 18(1): 36, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32093716

ABSTRACT

Functionalized multi-walled carbon nanotubes (MWCNT) have become the focus of increased research interest, particularly in their application as tools in different areas, such as the biomedical field. Despite the benefits associated with functionalization of MWCNT, particularly in overcoming issues relating to solubility, several studies have demonstrated that these functionalized nanoparticles display different toxicity profiles. For this study, we aim to compare NR8383 cells responses to three well-characterized MWCNT with varying functional groups. This study employed cytotoxicity assays, transcriptomics and proteomics to assess their toxicity using NR8383 rat alveolar macrophages as an in vitro model. The study findings indicated that all MWCNT altered ribosomal protein translation, cytoskeleton arrangement and induced pro-inflammatory response. Only functionalized MWCNT alter mTOR signaling pathway in conjunction with increased Lamtor gene expression. Furthermore, the type of functionalization was also important, with cationic MWCNT activating the transcription factor EB and inducing autophagy while the anionic MWCNT altering eukaryotic translation initiation factor 4 (EIF4) and phosphoprotein 70 ribosomal protein S6 kinase (p70S6K) signaling pathway as well as upregulation Tlr2 gene expression. This study proposes that MWCNT toxicity mechanisms are functionalization dependent and provides evidence that inflammatory response is a key event of carbon nanotubes toxicity.


Subject(s)
Gene Expression Profiling , Macrophages, Alveolar/drug effects , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/toxicity , Animals , Autophagy , Cations , Cell Line , Cell Survival/drug effects , DNA Damage/drug effects , Gene Expression , L-Lactate Dehydrogenase/metabolism , Macrophages, Alveolar/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Nanostructures/chemistry , Particle Size , Proteomics , Rats , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
15.
J Adv Res ; 22: 85-97, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31956445

ABSTRACT

Mesoporous carbons containing up to 3.6 at.% N and 4.4 at.% O and exhibiting graphitic character have been prepared from Ni(II) and Fe(II) phthalocyanines by direct pyrolysis or by HTC + pyrolysis, and subsequently applied as supercapacitor materials. No mesoporous templates or doping post-treatments were used, and the catalytic effect of Ni(II) and Fe(II), naturally present in the precursor molecules, allowed obtaining graphitic carbons at temperatures ≤ 900 °C. Metals were encapsulated in the core of onion-like structures with no contact with the electrolyte, so that electrodes were prevented from degradation during device operation. The materials exhibited high rate capabilities up to 1 V s-1, higher interfacial capacitances than a wide variety of materials possessing higher surface areas, and high capacitance retentions up to 99% at 5 A g-1 current density throughout 10 000 charge-discharge cycles. The electrochemical performances of the phthalocyanine-derived carbons are due to their graphitic character and to the pseudocapacitance contribution of the surface groups through Faradaic reactions. This work opens a new way to obtain carbon materials from a great family of metal phthalocyanines, since the central metal and the radicals of the latter can be varied to tune the carbon properties for specific applications.

16.
RSC Adv ; 10(10): 5996-6005, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-35497442

ABSTRACT

Because the binary chalcogenide SnTe is an interesting Pb-free alternative to the state-of-the-art thermoelectric material PbTe, significant efforts were devoted to the optimization of its thermoelectric properties over the last few years. Here, we show that saturation-annealing treatments performed at 823, 873 or 973 K under Sn-rich conditions provide a successful strategy to prepare polycrystalline samples with a controlled concentration of Sn vacancies. Both scanning transmission electron microscopy and Mössbauer spectroscopy demonstrate the absence of Sn-rich areas at the grain boundaries in the saturation-annealed samples. Transport property measurements, performed over a wide range of temperatures (5-800 K), show that this technique enables achieving thermoelectric performances at 800 K similar to those obtained using Sn self-compensation. The three saturation annealing temperatures result in comparable transport properties across the entire temperature range due to similar hole concentrations ranging between 1.0 and 1.5 × 1020 cm-3 at 300 K. As equally observed in samples prepared by other synthetic routes, the temperature dependence of the Hall mobility evidences that charge transport is strongly affected by point-defect scattering caused by the random distribution of Sn vacancies.

17.
Talanta ; 208: 120396, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31816758

ABSTRACT

Interesting sensing performances of indoor formaldehyde pollution were obtained when small amounts of zinc were introduced in tin oxides. Nanostructured Sn oxide-based porous materials doped with Zn or not, were synthesized using hydrothermal routes. The physicochemical properties of the as-prepared metal-oxide materials were characterized using nitrogen adsorption, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Gas sensors were prepared using the aforementioned tin oxide materials and they exhibited a high sensitivity to formaldehyde at 230 °C, as well as a good repeatability over the time. Their limit of formaldehyde detection was as low as 8 ppb in dry air and 50 ppb in air with 60% RH at 25 °C. These results were much better that those reported in the open literature and they were attributed to both higher area BET, around 180 m2/g, and smaller crystallite size, 3.1 nm.

18.
Biomater Sci ; 8(4): 1137-1147, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31584052

ABSTRACT

Synthetic organic and inorganic carriers often have limitations associated with problematic targeting ability or non-optimized pharmacokinetics, and, therefore, they have restricted therapeutic potential. Natural drug carriers (e.g. mesenchymal stem cells, MSCs) are able to migrate towards the tumor site and penetrate cancerous cells. These biomimetic features make MSCs an attractive delivery platform that allows achieving maximal therapeutic efficiency with minimal toxic side effects. A combination of MSCs exhibiting a homing effect on tumors with stimuli-responsive nanostructured carriers is foreseen to have a huge impact in the field of personalized oncology. Here we develop for the first time a light-sensitive biomimetic delivery platform based on MSCs impregnated with submicron sized composite capsules containing an antitumor drug. This cell-based delivery system triggers the release of the drug upon near-infrared (NIR) laser irradiation due to gold nanorods (Au NRs) incorporated into the capsule wall. The NIR-triggered release of the antitumor drug such as vincristine leads to the effective mortality of tumor spheroids made of primary melanoma cells. Encapsulated vincristine delivered by MSCs into the tumor spheroids and deployed over the whole spheroid upon NIR exposure represents a promising therapy for the improved treatment of malignant neoplasms.


Subject(s)
Biomimetics/methods , Melanoma/therapy , Mesenchymal Stem Cells/cytology , Spheroids, Cellular/cytology , Vincristine/pharmacology , Capsules , Cell Movement/drug effects , Cell Survival/drug effects , Drug Delivery Systems , Gold/chemistry , Humans , Light , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/drug effects , Nanotubes , Particle Size , Primary Cell Culture , Spheroids, Cellular/drug effects , Tumor Cells, Cultured , Vincristine/chemistry
19.
Inorg Chem ; 59(1): 360-366, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31859489

ABSTRACT

A new ternary phase with a composition Al1+xV2Sn2-x (x = 0.19) has been found during investigation of the Al-V-Sn ternary system. Single-crystal X-ray diffraction measurements reveal that this ternary phase crystallizes with an orthorhombic structure with a = 5.5931(1) Å, b = 18.8017(5) Å, and c = 6.7005(2) Å (space group Cmce). This compound is thus isostructural to the GaV2Sn2 structure type, showing a layered structure composed of vanadium cluster bands formed with pentagonal faces intercalated by Sn atom layers. High-resolution transmission electron microscopy measurements confirm the orthorhombic structure. Regarding lattice perfection, no dislocation could be identified within the probed Al1.19V2Sn1.81 single-crystal lamella. Ab initio calculations reveal a reduction of the density of states at the Fermi level, which could be attributed to both a Hume-Rothery effect combined with strong spd hybridization.

20.
Micron ; 127: 102759, 2019 12.
Article in English | MEDLINE | ID: mdl-31585250

ABSTRACT

Copper surface after antibacterial test against E. coli was examined in the aspect of corrosion. Results from scanning electron microscope (SEM), grazing incidence X-ray diffractometer (GIXRD) and Raman spectroscopy together confirmed less oxidation on copper surface with the presence of E. coli. The inhibition of the cuprous oxide (Cu2O) layer instead ensured the continuous exposure of copper surface, letting localised corrosion attacks observable and causing a stronger release of copper ions. These phenomena are attributed to the fact that E. coli act as ions reservoirs since high amount of copper accumulation were found by energy dispersive X-ray spectroscopy (EDS).


Subject(s)
Copper/chemistry , Escherichia coli/metabolism , Corrosion , Microscopy, Electron, Scanning Transmission , Oxidation-Reduction , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...