Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2401525, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978444

ABSTRACT

Lung cancer remains a major global health concern with high mortality rates and poor prognosis. Bridging the gap between the chemical and cellular understanding of cell-decorated biomimetic nanocomposites and their clinical translation is crucial for developing effective therapies. Nanocomposites show promise in targeted drug delivery and diagnostics, but their clinical application is hindered by biocompatibility and clearance issues. To overcome these challenges, biomimetic approaches utilizing cell membrane-coated nanomaterials emerge. By camouflaging nanomaterials with cell membranes, the biointerfaces are enhanced, and the inherent properties of the donor cell membranes are acquired. This review provides an overview of recent advancements on cell membrane-coated nanocomposites for lung cancer diagnosis and treatment. It discusses fabrication techniques, biomedical applications, challenges, and future prospects. The incorporation of cell membranes into nanocomposites holds potential for improved lung cancer therapy, but further development and refinement are needed for precise tumor targeting. Addressing the identified challenges will pave the way for clinical translation of these biomimetic nanoplatforms and advance lung cancer diagnosis and treatment.

2.
Environ Res ; 238(Pt 1): 116979, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37660871

ABSTRACT

Calcium (Ca2+) homeostasis is essential for maintaining physiological processes in the body. Disruptions in Ca2+ signaling can lead to various pathological conditions including inflammation, fibrosis, impaired immune function, and accelerated senescence. Hypocalcemia, a common symptom in diseases such as acute respiratory distress syndrome (ARDS), cancer, septic shock, and COVID-19, can have both potential protective and detrimental effects. This article explores the multifaceted role of Ca2+ dysregulation in inflammation, fibrosis, impaired immune function, and accelerated senescence, contributing to disease severity. Targeting Ca2+ signaling pathways may provide opportunities to develop novel therapeutics for age-related diseases and combat viral infections. However, the role of Ca2+ in viral infections is complex, and evidence suggests that hypocalcemia may have a protective effect against certain viruses, while changes in Ca2+ homeostasis can influence susceptibility to viral infections. The effectiveness and safety of Ca2+ supplements in COVID-19 patients remain a subject of ongoing research and debate. Further investigations are needed to understand the intricate interplay between Ca2+ signaling and disease pathogenesis.


Subject(s)
COVID-19 , Hypocalcemia , Neoplasms , Sepsis , Humans , Sepsis/diagnosis , Sepsis/therapy , Inflammation , Fibrosis , COVID-19 Testing
3.
Chemosphere ; 311(Pt 2): 137191, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36368543

ABSTRACT

Nowadays, the evolution of two-dimensional materials like transition metal carbides (MXene) prepares a novel path to surpass the "trade-off" between the membrane permeation and rejection rates. Based on water swelling and oxidation vulnerability, MXene membranes showed vivid defects such as inadequate stability, detrimental adsorption, and haphazardly stacked nanosheets. Here, we prepared Ti3C2Tx MXene@metal-organic frameworks nanosheets from aminated metal-organic framework-101 (NH2-MIL-101(Al)) via the in-situ growth method and incorporated them into the thin-film polymer to acquire desirable MXene nanosheets with tailor-made structures. The earned modified thin-film nanocomposite membrane showed high salt rejection for Na2SO4 (98.6 ± 0.5%), MgSO4 (96.9 ± 0.7%), MgCl2 (84.5 ± 0.8%), and NaCl (82.5 ± 0.8%), and also showed an improved permeation rate by three times (17.1 ± 0.2 L m-2. h-1. bar-1). Concurrently, the rejection rate of five different types of heavy metal ions (Ni2+, Cd2+, Mn2+, Cu2+, and Zn2+) was tested and denoted more than a 95.2 ± 0.5% rejection rate for all of them, notably high for Mn2+ (97.6 ± 0.4%). After modification, the flux recovery rate was as high as 95.3 ± 0.4%, denoting more than 30% improvement; besides, anti-compactness features enhanced by nearly 34 ± 0.7%. The long-term water permeation kept 91.5 ± 0.9% of its initial rate indicating almost 40 ± 0.8% enhancement. In addition, the rejection performance of Na2SO4 for the optimized membrane was more than 97% even after two weeks.

SELECTION OF CITATIONS
SEARCH DETAIL