Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Chem ; 296: 106982, 2023 05.
Article in English | MEDLINE | ID: mdl-36868163

ABSTRACT

The formation of amyloid fibrils due to its association with fatal diseases, including Alzheimer's, has been investigated by many researchers. These common diseases, mostly become verified when it is too late to be treated. Currently, no cure is available for neurodegenerative diseases, and the process of diagnosing amyloid fibrils in the early stages, while there are fewer amyloid fibrils, has become an issue of interest. To do so, determining new probes with the highest binding affinity to the lowest number of amyloid fibrils is necessary. In this study, we proposed to employ new synthesized benzylidene-indandione derivatives as amyloid fibrils fluorescent detection probes. Native soluble proteins of insulin, bovine serum albumin (BSA), BSA amorphous aggregation, and insulin amyloid fibrils were used to evaluate our compounds' specificity to the amyloid structure. While ten synthesized compounds were examined individually, four of them including 3d, 3g, 3i, and 3j showed a high binding affinity with selectivity and specificity to amyloid fibrils, and their binding properties were also confirmed with in silico analysis. The drug-likeness prediction results for selected compounds by Swiss ADME server shows a satisfactory percentage of blood-brain barrier (BBB) permeability and gastrointestinal (GI) absorption for the compounds 3g, 3i, and 3j. More evaluation is needed to determine all properties of compounds in vitro and in vivo.


Subject(s)
Alzheimer Disease , Insulins , Humans , Amyloid beta-Peptides/chemistry , Alzheimer Disease/metabolism , Amyloid/metabolism , Benzylidene Compounds , Serum Albumin, Bovine/chemistry
2.
Sci Rep ; 12(1): 9813, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697707

ABSTRACT

One of the factors that causes severe metabolic imbalance and abnormal changes in many tissues, especially in the pancreas, is the pathological disease of diabetes mellitus. Therefore, in this study, the therapeutic effects of Scrophularia striata were investigated using an animal model in the control of diabetic injury and pancreatic complications caused by diabetes. A total of 66 rats (weight 220-250 g) were randomly divided into: Healthy Control group (rats without diabetes receiving Propylene glycol as solvent); Diabetic control group; 3 experimental healthy groups (receiving the extract with doses of 100, 200 and 400 mg/kg bw/day); 3 treatment groups; and3 pretreatment groups. Diabetes was induced in rats by intraperitoneal STZ (60 mg/kg bw). FBS, HbA1c and insulin were measured after 4 weeks. Pdx1 and Ins1 gene expression was assessed by RT-PCR. The histological evaluation was also performed with H&E staining. The data were analyzed by SPSS ver20 using ANOVA and Tukey tests. By treatment with S. striata ethanolic extract, these factors were close to the normal range. The expression of the Pdx1 and Ins1 genes increased in the treated rats with S. striata extract. Analysis of the obtained data indicates the effect of S. striata in improving the complications of diabetes in rats and can be considered for therapeutic purposes.


Subject(s)
Diabetes Mellitus, Experimental , Scrophularia , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Ethanol , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Pancreas/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Scrophularia/metabolism
3.
Mol Biotechnol ; 63(10): 919-932, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34109551

ABSTRACT

Hydrophobins are small surface-active proteins. They can connect to hydrophobic or hydrophilic regions and oligomerize in solution to form massive construction. In nature, these proteins are produced by filamentous fungi at different stages of growth. So far, researchers have used them in various fields of biotechnology. In this study, recombinant hydrophobin-1 (rHFB1, 7.5 kDa) was used to stabilize recombinant D-lactate dehydrogenase (rD-LDH, 35 kDa). rD-LDH is a sensitive enzyme deactivated and oxidized by external agents such as O2 and lights. So, its stabilization with rHFB1 can be the best index to demonstrate the positive effect of rHFB1 on preserving and improving enzyme's activity. The unique ability of rHFB1 for interacting with hydrophobic regions of rD-LDH was predicted by protein-protein docking study with ClusPro and PIC servers and confirmed by fluorescence experiments, and Colorless Native-PAGE. Measurement of thermodynamic parameters allows for authenticating the role of rHFB1 as a thermal stabilizer in the protein-protein complex (rD-LDH@rHFB1). Interaction between rHFB1 and rD-LDH improved half-life of enzyme 2.25-fold at 40 °C. Investigation of the kinetic parameters proved that the presence of rHFB1 along with the rD-LDH enhancement strongly the affinity of the enzyme for pyruvate. Furthermore, an increase of Kcat/Km for complex displayed the effect of rHFB1 for improving the enzyme's catalytic efficiency.


Subject(s)
Fungal Proteins/metabolism , Lactate Dehydrogenases/chemistry , Lactate Dehydrogenases/metabolism , Enzyme Stability , Fungal Proteins/chemistry , Fungal Proteins/genetics , Hydrophobic and Hydrophilic Interactions , Lactate Dehydrogenases/genetics , Models, Molecular , Molecular Docking Simulation , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...