Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(19): 13628-13639, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665496

ABSTRACT

Copper oxide-based nanocomposites are promising electrode materials for high-performance supercapacitors due to their unique properties that aid electrolyte access and ion diffusion to the electrode surface. Herein, a facile and low-cost synthesis in situ strategy based on co-precipitation and incorporation processes of reduced graphene oxide (rGO), followed by in situ oxidative polymerization of aniline monomer has been reported. CuO@Cu4O3/rGO/PANI nanocomposite revealed the good distribution of CuO@Cu4O3 and rGO within the polymer matrix which allows improved electron transport and ion diffusion process. Galvanostatic charge-discharge (GCD) results displayed a higher specific capacitance value of 508 F g-1 for CuO@Cu4O3/rGO/PANI at 1.0 A g-1 in comparison to the pure CuO@Cu4O3 278 F g-1. CuO@Cu4O3/rGO/PANI displays an energy density of 23.95 W h kg-1 and power density of 374 W kg-1 at the current density of 1 A g-1 which is 1.8 times higher than that of CuO@Cu4O3 (13.125 W h kg-1) at the same current density. The retention of the electrode was 93% of its initial capacitance up to 5000 cycles at a scan rate of 100 mV s-1. The higher capacitance of the CuO@Cu4O3/rGO/PANI electrode was credited to the formation of a fibrous network structure and rapid ion diffusion paths through the nanocomposite matrix that resulted in enhanced surface-dependent electrochemical properties.

2.
Sci Rep ; 13(1): 9160, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280230

ABSTRACT

Acoustic radiation forces can remotely manipulate particles. Forces from a standing wave field align microscale particles along the nodal or anti-nodal locations of the field to form three-dimensional (3D) patterns. These patterns can be used to form 3D microstructures for tissue engineering applications. However, standing wave generation requires more than one transducer or a reflector, which is challenging to implement in vivo. Here, a method is developed and validated to manipulate microspheres using a travelling wave from a single transducer. Diffraction theory and an iterative angular spectrum approach are employed to design phase holograms to shape the acoustic field. The field replicates a standing wave and aligns polyethylene microspheres in water, which are analogous to cells in vivo, at pressure nodes. Using Gor'kov potential to calculate the radiation forces on the microspheres, axial forces are minimized, and transverse forces are maximized to create stable particle patterns. Pressure fields from the phase holograms and resulting particle aggregation patterns match predictions with a feature similarity index > 0.92, where 1 is a perfect match. The resulting radiation forces are comparable to those produced from a standing wave, which suggests opportunities for in vivo implementation of cell patterning toward tissue engineering applications.

3.
Braz. J. Anesth. (Impr.) ; 73(3): 291-300, May-June 2023. tab, graf
Article in English | LILACS | ID: biblio-1439618

ABSTRACT

Abstract Introduction: Increasing abdominal pressures could affect pulmonary compliance and cardiac performance, a fact based on which the aim of the present study to detect the cardiopulmonary burden of multiple retractors application during supine versus lateral abdominal surgeries. We hypothesized that surgical ring multiple retractors application would affect the pulmonary and cardiac functions during both lateral and supine abdominal surgeries. Methods: Prospective observational comparative study on forty surgical patients subdivided into two groups twenty each, comparing pulmonary compliance and cardiac performance before, during and after retractors application, group (S) supine position cystectomy surgery, and group (L) lateral position nephrectomy surgery under general anesthesia, Composite 1ry outcome; dynamic compliance C-dyn and cardiac index CI and Other outcome variables ICON cardio-meter were also recorded. Results: C-dyn and C-stat were significantly decreased late during retractor application in lateral compared to supine surgery with significant decrease compared to basal values all over the surgical time. CI was significantly increased after retractor removal in both of the study groups compared to basal values. PAW P was significantly increased in -lateral compared to supine surgery -with significant increase compared to basal value all over the surgical time in both of the study groups. significant increase in DO2I compared to basal value during both supine and lateral positions. Conclusion: Surgical retraction results in a short-lived significant decreases in lung compliance and cardiac output particularly during the lateral-kidney position than the supine position compliance.


Subject(s)
Humans , Abdomen/surgery , Anesthesia, General/methods , Cardiac Output , Lung Compliance , Supine Position
4.
Nanomaterials (Basel) ; 13(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36903798

ABSTRACT

Photoelectrochemical (PEC) solar water splitting is favourable for transforming solar energy into sustainable hydrogen fuel using semiconductor electrodes. Perovskite-type oxynitrides are attractive photocatalysts for this application due to their visible light absorption features and stability. Herein, strontium titanium oxynitride (STON) containing anion vacancies of SrTi(O,N)3-δ was prepared via solid phase synthesis and assembled as a photoelectrode by electrophoretic deposition, and their morphological and optical properties and PEC performance for alkaline water oxidation are investigated. Further, cobalt-phosphate (CoPi)-based co-catalyst was photo-deposited over the surface of the STON electrode to boost the PEC efficiency. A photocurrent density of ~138 µA/cm at 1.25 V versus RHE was achieved for CoPi/STON electrodes in presence of a sulfite hole scavenger which is approximately a four-fold enhancement compared to the pristine electrode. The observed PEC enrichment is mainly due to the improved kinetics of oxygen evolution because of the CoPi co-catalyst and the reduced surface recombination of the photogenerated carriers. Moreover, the CoPi modification over perovskite-type oxynitrides provides a new dimension for developing efficient and highly stable photoanodes in solar-assisted water-splitting reactions.

5.
Braz J Anesthesiol ; 73(3): 291-300, 2023.
Article in English | MEDLINE | ID: mdl-34298077

ABSTRACT

INTRODUCTION: Increasing abdominal pressures could affect pulmonary compliance and cardiac performance, a fact based on which the aim of the present study to detect the cardiopulmonary burden of multiple retractors application during supine versus lateral abdominal surgeries. We hypothesized that surgical ring multiple retractors application would affect the pulmonary and cardiac functions during both lateral and supine abdominal surgeries. METHODS: Prospective observational comparative study on forty surgical patients subdivided into two groups twenty each, comparing pulmonary compliance and cardiac performance before, during and after retractors application, group (S) supine position cystectomy surgery, and group (L) lateral position nephrectomy surgery under general anesthesia, Composite 1ry outcome; dynamic compliance C-dyn and cardiac index CI and Other outcome variables ICON cardio-meter were also recorded. RESULTS: C-dyn and C-stat were significantly decreased late during retractor application in lateral compared to supine surgery with significant decrease compared to basal values all over the surgical time. CI was significantly increased after retractor removal in both of the study groups compared to basal values. PAWP was significantly increased in -lateral compared to supine surgery -with significant increase compared to basal value all over the surgical time in both of the study groups. significant increase in DO2I compared to basal value during both supine and lateral positions. CONCLUSION: Surgical retraction results in a short-lived significant decreases in lung compliance and cardiac output particularly during the lateral-kidney position than the supine position compliance.


Subject(s)
Abdomen , Anesthesia, General , Humans , Cardiac Output , Abdomen/surgery , Lung Compliance , Anesthesia, General/methods , Supine Position
6.
J Virus Erad ; 8(2): 100077, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35795869

ABSTRACT

Background: The risk of transfusion transmitted dengue (DENV) is increasingly recognized and poses a risk to blood safety as well as spreading into non-immune communities. Objectives: To determine dengue serological profile, environmental risk, knowledge, and preventive measures among blood donors in a national blood bank in northern Egypt. Methods: A total of 500 blood donors were enrolled into this study between June and September 2018. Socio-demographic and medical data were collected using a predesigned questionnaire. Blood samples were screened for anti-DENV IgM, anti-DENV IgG and non-structural protein 1 antigen (DENV-NS1 antigen). Results: History of past dengue exposure was identified in 10.2% of blood donors. No samples (0.0%) tested positive for anti-DENV IgG, IgM or NS1 antigen. At the time of blood donation, no individuals had any symptoms suggestive of a dengue-related illness. Dengue exposure strongly correlated with travel to the Kingdom of Saudi Arabia (KSA), Sudan and the El-Quseir outbreak area in Egypt. Knowledge of dengue and prevention methods was found to be substantially deficient, and the relatively higher level of knowledge among exposed donors did not translate into appropriate preventative measures. Conclusions: Our risk assessment shows the impact of travel on DENV exposure and highlights its potential threat to disease spread in Egypt. Dengue awareness programs are urgently needed for effective prevention of transmission.

7.
Nanomaterials (Basel) ; 12(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35269368

ABSTRACT

This work demonstrates the chemical synthesis of two-dimensional nanoflakes of mesoporous nickel/nickel (II) hydroxide (Ni/Ni(OH)2-NFs) using double templates of surfactant self-assembled thin-film and foam of hydrogen bubbles produced by sodium borohydride reducing agent. Physicochemical characterizations show the formation of amorphous mesoporous 2D nanoflakes with a Ni/Ni(OH)2 structure and a high specific surface area (165 m2/g). Electrochemical studies show that the electrocatalytic activity of Ni/Ni(OH)2 nanoflakes towards methanol oxidation in alkaline solution is significantly enhanced in comparison with that of parent bare-Ni(OH)2 deposited from surfactant-free solution. Cyclic voltammetry shows that the methanol oxidation mass activity of Ni/Ni(OH)2-NFs reaches 545 A/cm2 gcat at 0.6 V vs. Ag/AgCl, which is more than five times higher than that of bare-Ni(OH)2. Moreover, Ni/Ni(OH)2-NFs reveal less charge transfer resistance (10.4 Ω), stable oxidation current density (625 A/cm2 gcat at 0.7 V vs. Ag/AgCl), and resistance to the adsorption of reaction intermediates and products during three hours of constant-potential methanol oxidation electrolysis in alkaline solution. The high-performance electrocatalytic activity of Ni/Ni(OH)2 nanoflakes is mainly derived from efficient charge transfer due to the high specific surface area of the 2D mesoporous architecture of the nanoflakes, as well as the mass transport of methanol to Ni2+/Ni3+ active sites throughout the catalyst layer.

8.
Nanomaterials (Basel) ; 13(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36616039

ABSTRACT

This work demonstrates hydrazine electro-oxidation and sensing using an ultrathin copper oxide nanosheet (CuO-NS) architecture prepared via a versatile foam-surfactant dual template (FSDT) approach. CuO-NS was synthesised by chemical deposition of the hexagonal surfactant Brij®58 liquid crystal template containing dissolved copper ions using hydrogen foam that was concurrently generated by a sodium borohydride reducing agent. The physical characterisations of the CuO-NS showed the formation of a two-dimensional (2D) ultrathin nanosheet architecture of crystalline CuO with a specific surface area of ~39 m2/g. The electrochemical CuO-NS oxidation and sensing performance for hydrazine oxidation revealed that the CuO nanosheets had a superior oxidation performance compared with bare-CuO, and the reported state-of-the-art catalysts had a high hydrazine sensitivity of 1.47 mA/cm2 mM, a low detection limit of 15 µM (S/N = 3), and a linear concentration range of up to 45 mM. Moreover, CuO-NS shows considerable potential for the practical use of hydrazine detection in tap and bottled water samples with a good recovery achieved. Furthermore, the foam-surfactant dual template (FSDT) one-pot synthesis approach could be used to produce a wide range of nanomaterials with various compositions and nanoarchitectures at ambient conditions for boosting the electrochemical catalytic reactions.

9.
RSC Adv ; 11(5): 3190-3201, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-35424230

ABSTRACT

An electrocatalyst of potassium nickel aluminium hexafluoride (KNiAlF6) nanosheets has been prepared using solid-phase synthesis at 900 °C. X-ray diffraction, scanning electron microscopy, and conductivity studies confirmed the formation of KNiAlF6 nanosheets having a cubic defect pyrochlore structure with an average thickness of 60-70 nm and conductivity of 1.297 × 103 S m-1. The electrochemical catalytic activity of the KNiAlF6 nanosheets was investigated for urea oxidation in alkaline solution. The results show that the KNiAlF6 nanosheets exhibit a mass activity of ∼395 mA cm-2 mg-1 at 1.65 V vs. HRE, a reaction activation energy of 4.02 kJ mol-1, Tafel slope of 22 mV dec-1 and an oxidation onset potential of ∼1.35 V vs. HRE which is a significant enhancement for urea oxidation when compared with both bulk Ni(OH)2 and nickel hydroxide-based catalysts published in the literature. Chronoamperometry and impedance analysis of the KNiAlF6 nanosheets reveal lower charge transfer resistance and long-term stability during the prolonged urea electro-oxidation process, particularly at 60 °C. After an extended urea electrolysis process, the structure and morphology of the KNiAlF6 nanosheets were significantly changed due to partial transformation to Ni(OH)2 but the electrochemical activity was sustained. The enhanced electrochemical surface area and the replacement of nickel in the lattice by aluminium make KNiAlF6 nanosheets highly active electrocatalysts for urea oxidation in alkaline solution.

10.
Article in English | MEDLINE | ID: mdl-33156788

ABSTRACT

Boiling histotripsy (BH) uses millisecond-long ultrasound (US) pulses with high-amplitude shocks to mechanically fractionate tissue with potential for real-time lesion monitoring by US imaging. For BH treatments of abdominal organs, a high-power multielement phased array system capable of electronic focus steering and aberration correction for body wall inhomogeneities is needed. In this work, a preclinical BH system was built comprising a custom 256-element 1.5-MHz phased array (Imasonic, Besançon, France) with a central opening for mounting an imaging probe. The array was electronically matched to a Verasonics research US system with a 1.2-kW external power source. Driving electronics and software of the system were modified to provide a pulse average acoustic power of 2.2 kW sustained for 10 ms with a 1-2-Hz repetition rate for delivering BH exposures. System performance was characterized by hydrophone measurements in water combined with nonlinear wave simulations based on the Westervelt equation. Fully developed shocks of 100-MPa amplitude are formed at the focus at 275-W acoustic power. Electronic steering capabilities of the array were evaluated for shock-producing conditions to determine power compensation strategies that equalize BH exposures at multiple focal locations across the planned treatment volume. The system was used to produce continuous volumetric BH lesions in ex vivo bovine liver with 1-mm focus spacing, 10-ms pulselength, five pulses/focus, and 1% duty cycle.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Abdomen , Animals , Cattle , Liver/diagnostic imaging , Ultrasonography
11.
J Acoust Soc Am ; 148(1): 44, 2020 07.
Article in English | MEDLINE | ID: mdl-32752768

ABSTRACT

Burst wave lithotripsy (BWL) is a technology for comminuting urinary stones. A BWL transducer's requirements of high-pressure output, limited acoustic window, specific focal depth, and frequency to produce fragments of passable size constrain focal beamwidth. However, BWL is most effective with a beam wider than the stone. To produce a broad-beam, an iterative angular spectrum approach was used to calculate a phase screen that was realized with a rapid prototyped lens. The technique did not accurately replicate a target beam profile when an axisymmetric profile was chosen. Adding asymmetric weighting functions to the target profile achieved appropriate beamwidth. Lenses were designed to create a spherically focused narrow-beam (6 mm) and a broad-beam (11 mm) with a 350-kHz transducer and 84-mm focal depth. Both lenses were used to fragment artificial stones (11 mm long) in a water bath, and fragmentation rates were compared. The linearly simulated and measured broad beamwidths that were 12 mm and 11 mm, respectively, with a 2-mm-wide null at center. The broad-beam and the narrow-beam lenses fragmented 44 ± 9% and 16 ± 4% (p = 0.007, N = 3) of a stone by weight, respectively, in the same duration at the same peak negative pressure. The method broadened the focus and improved the BWL rate of fragmentation of large stones.


Subject(s)
Kidney Calculi , Lithotripsy , Urinary Calculi , Humans , Kidney Calculi/diagnostic imaging , Kidney Calculi/therapy , Lithotripsy/adverse effects , Transducers
12.
Proc Natl Acad Sci U S A ; 117(29): 16848-16855, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32631991

ABSTRACT

In certain medical applications, transmitting an ultrasound beam through the skin to manipulate a solid object within the human body would be beneficial. Such applications include, for example, controlling an ingestible camera or expelling a kidney stone. In this paper, ultrasound beams of specific shapes were designed by numerical modeling and produced using a phased array. These beams were shown to levitate and electronically steer solid objects (3-mm-diameter glass spheres), along preprogrammed paths, in a water bath, and in the urinary bladders of live pigs. Deviation from the intended path was on average <10%. No injury was found on the bladder wall or intervening tissue.


Subject(s)
Kidney Calculi/therapy , Ultrasonic Therapy/methods , Ultrasonic Waves , Animals , Swine , Transducers , Ultrasonic Therapy/instrumentation
13.
RSC Adv ; 10(22): 13126-13138, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-35492119

ABSTRACT

Nano cobalt and porous zinc-cobalt oxide particles were synthesized using the concept of coordination compounds of the type [M(ii)L,L'] (where M(ii) = Co(ii) & Zn(ii) L= 4-hydroxy benzaldehyde and L' = piperazine) and were thoroughly characterized. Because the precursors are coordination compounds possessing specific geometry in the crystal lattice, uniform and appropriately sized homo- and heterometallic nanocrystals of Co3O4 and ZnO·Co3O4 were obtained after a thermal process. The homo and hetero composite particles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), FT IR spectroscopy and electrochemistry. The paramagnetic chemical shift of the methyl protons in DMSO due to the nanoparticles was studied by NMR spectroscopy, which indicated that the cobalt particles were ferromagnetic. The structural design modification and surface area of Co3O4 was improved by adding the ZnO component. DFT calculations were done to validate the nano structure. Supercapacitance ability of the nanoparticles was studied by cyclic voltammetry, and electrochemical calculations were performed to determine the microelectronic characteristics of the material. The specific capacitance was estimated at 207.3 and 51.1 F g-1 for the ZnO·Co3O4 and Co3O4 electrodes, respectively. Clearly, ZnO·Co3O4 exhibited a much higher specific capacitance than the Co3O4 nanocrystal, which was attributed to better conductivity and higher surface area. The capacitance activity showed multifold enhancement due to the porous nature of Zn oxide in the heterometallic nano ZnO·Co3O4 composite.

14.
Nanomaterials (Basel) ; 9(10)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652537

ABSTRACT

Nanostructured photoanodes are attractive materials for hydrogen production via water photo-electrolysis process. This study focused on the incorporation of carbon quantum dots doped with nitrogen as a photosensitizer into mesoporous tungsten trioxide photoanodes (N-CQD/meso-WO3) using a surfactant self-assembly template approach. The crystal structure, composition, and morphology of pure and N-CQD- modified mesoporous WO3 photoanodes were investigated using scanning electron and transmission microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Due to their high surface area, enhanced optical absorption, and charge-carrier separation and transfer, the resulting N-CQD/meso-WO3 photoanodes exhibited a significantly enhanced photocurrent density of 1.45 mA cm-2 at 1.23 V vs. RHE under AM 1.5 G illumination in 0.5 M Na2SO4 without any co-catalysts or sacrificial reagent, which was about 2.23 times greater than its corresponding pure meso-WO3. Moreover, the oxygen evolution onset potential of the N-CQD/meso-WO3 photoanodes exhibited a negative shift of 95 mV, signifying that both the charge-carrier separation and transfer processes were promoted.

15.
Phys Rev Appl ; 12(4)2019 Oct.
Article in English | MEDLINE | ID: mdl-32123693

ABSTRACT

Theoretical models allow design of acoustic traps to manipulate objects with radiation force. Here, a model of the acoustic radiation force by an arbitrary beam on a solid object was validated against measurement. The lateral force in water of different acoustic beams was measured and calculated for spheres of different diameter (2-6 wavelengths λ in water) and composition. This is the first effort to validate a general model, to quantify the lateral force on a range of objects, and to electronically steer large or dense objects with a single-sided transducer. Vortex beams and two other beam shapes having a ring-shaped pressure field in the focal plane were synthesized in water by a 1.5-MHz, 256-element focused array. Spherical targets (glass, brass, ceramic, 2-6 mm dia.) were placed on an acoustically transparent plastic plate that was normal to the acoustic beam axis and rigidly attached to the array. Each sphere was trapped in the beam as the array with the attached plate was rotated until the bead fell from the acoustic trap because of gravity. Calculated and measured maximum obtained angles agreed on average to within 22%. The maximum lateral force occurred when the target diameter equaled the beam width; however, objects up to 40% larger than the beam width were trapped. The lateral force was comparable to the gravitation force on spheres up to 90 mg (0.0009 N) at beam powers on the order of 10 W. As a step toward manipulating objects, the beams were used to trap and electronically steer the spheres along a two-dimensional path.

16.
Article in English | MEDLINE | ID: mdl-29994675

ABSTRACT

Multielement focused ultrasound phased arrays have been used in therapeutic applications to treat large tissue volumes by electronic steering of the focus, to target multiple simultaneous foci, and to correct aberration caused by inhomogeneous tissue pathways. There is an increasing interest in using arrays to generate more complex beam shapes and corresponding acoustic radiation force patterns for manipulation of particles such as kidney stones. Toward this end, experimental and computational tools are needed to enable accurate delivery of desired transducer vibrations and corresponding ultrasound fields. The purpose of this paper was to characterize the vibrations of a 256-element array at 1.5 MHz, implement strategies to compensate for variability, and test the ability to generate specified vortex beams that are relevant to particle manipulation. The characterization of the array output was performed in water using both element-by-element measurements at the focus of the array and holography measurements for which all the elements were excited simultaneously. Both methods were used to quantify each element's output so that the power of each element could be equalized. Vortex beams generated using both compensation strategies were measured and compared to the Rayleigh integral simulations of fields generated by an idealized array based on the manufacturer's specifications. Although both approaches improved beam axisymmetry, compensation based on holography measurements had half the error relative to the simulation results in comparison to the element-by-element method.


Subject(s)
Ultrasonography/instrumentation , Equipment Design , Holography , Transducers , Vibration
17.
Nanomaterials (Basel) ; 8(1)2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29346306

ABSTRACT

Photoanodes fabricated by the electrophoretic deposition of a thermally prepared zinc tantalum oxynitride (ZnTaO2N) catalyst onto indium tin oxide (ITO) substrates show photoactivation for the oxygen evolution reaction (OER) in alkaline solutions. The photoactivity of the OER is further boosted by the photodeposition of cobalt phosphate (CoPi) layers onto the surface of the ZnTaO2N photoanodes. Structural, morphological, and photoelectrochemical (PEC) properties of the modified ZnTaO2N photoanodes are studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet visible (UV-Vis) diffuse reflectance spectroscopy, and electrochemical techniques. The presence of the CoPi layer significantly improved the PEC performance of water oxidation in an alkaline sulphate solution. The photocurrent-voltage behavior of the CoPi-modified ZnTaO2N anodes was improved, with the influence being more prominent at lower oxidation potentials. A stable photocurrent density of about 2.3 mA·cm-2 at 1.23 V vs. RHE was attained upon visible light illumination. Relative to the ZnTaO2N photoanodes, an almost three-fold photocurrent increase was achieved at the CoPi/ZnTaO2N photoelectrode. Perovskite-based oxynitrides are modified using an oxygen-evolution co-catalyst of CoPi, and provide a new dimension for enhancing the photoactivity of oxygen evolution in solar-assisted water-splitting reactions.

19.
J Colloid Interface Sci ; 506: 553-563, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28756322

ABSTRACT

In this study, visible light driven BiFeWO6/BiVO4 nanocomposite was synthesized via simple additive-free wet-chemical process. Various physicochemical characterization methods such as X-ray diffraction (XRD), fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electrons microscopy (TEM), energy dispersive spectroscopy (EDS) spectra, UV visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and photoelectrochemical measurements were performed to examine the structure, surface morphology, electrochemical and optical behavior of the synthesized material. The photocatalytic performances of the as-synthesized materials were assessed by the photodegradation of methylene blue (MB) in visible-light illumination. The optimum BiFeWO6/BiVO4-2 nanocomposite has shown 95% degradation efficiency of (MB) after 90min. This is about 10-folds higher than that of pristine bismuth vanadate (BiVO4). This enhancement of photocatalytic performances is credited to the photogenerated electrons transfer from BiVO4 to BiFeWO6 catalyst surface and thereby reduced the recombination process. The higher photocatalytic activity, long-term stability and recyclability results have revealed that the BiFeWO6/BiVO4 nanocomposite could be an auspicious material for the elimination of organic contaminants present in the ecosystem. Moreover, a probable mechanism for the catalytic degradation of MB dye over BiFeWO6/BiVO4 system is also proposed based on experimental results.

20.
ChemSusChem ; 9(19): 2779-2783, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27585108

ABSTRACT

Photoelectrochemical water splitting with metal oxide semiconductors offers a cost-competitive alternative for the generation of solar fuels. Most of the materials studied so far suffer from poor charge-transfer kinetics at the semiconductor/liquid interface, making compulsory the use of catalytic layers to overcome the large overpotentials required for the water oxidation reaction. Herein, we report a very soft electrolytic synthesis deposition method, which allows remarkably enhanced water oxidation kinetics of BiVO4 photoanodes by the sequential addition of Zr and Fe precursors. Upon a heat treatment cycle, these precursors are converted into monoclinic ZrO2 and α-Fe2 O3 nanoparticles, which mainly act as catalysts, leading to a five-fold increase of the water oxidation photocurrent of BiVO4 . This method provides a versatile platform that is easy to apply to different semiconductor materials, fully reproducible, and facile to scale-up on large area conductive substrates with attractive implications for technological deployment.


Subject(s)
Bismuth/chemistry , Electrodes , Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , Vanadates/chemistry , Water/chemistry , Zirconium/chemistry , Catalysis , Electrochemical Techniques , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Photochemical Processes , Semiconductors
SELECTION OF CITATIONS
SEARCH DETAIL
...