Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
IEEE/ACM Trans Comput Biol Bioinform ; 19(6): 3715-3724, 2022.
Article in English | MEDLINE | ID: mdl-34613918

ABSTRACT

Parkinson's disease is the second most common progressive neurodegenerative movement disorder. Mutations in retromer complex subunit and VPS35 represent the second most common cause of late-onset familial Parkinson's disease. The mutation in VPS35 can disrupt the normal protein functions resulting in Parkinson's disease. The aim of this study was the identification of deleterious missense Single Nucleotide Polymorphisms (nsSNPs) and their structural and functional impact on the VPS35 protein. In this study, several insilico tools were used to identify deleterious and disease-associated nsSNPs. 3D structure of VPS35 protein was constructed through MODELLER 9.2, normalized using FOLDX, and evaluated through RAMPAGE and ERRAT whereas, FOLDX was used for mutagenesis. 25 ligands were obtained from literature and docked using PyRx 0.8 software. Based on the binding affinity, five ligands i.e., PG4, MSE, GOL, EDO, and CAF were further analyzed. Molecular Dynamic simulation analysis was performed using GROMACS 5.1.4, where temperature, pressure, density, RMSD, RMSF, Rg, and SASA graphs were analyzed. The results showed that the mutations Y67H, R524W, and D620N had a structural and functional impact on the VPS35 protein. The current findings will help in appropriate drug design against the disease caused by these mutations in a large population using in-vitro study.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Polymorphism, Single Nucleotide/genetics , Ligands , Mutation , Software , Vesicular Transport Proteins/genetics
2.
Neurogenetics ; 22(4): 251-262, 2021 10.
Article in English | MEDLINE | ID: mdl-34213677

ABSTRACT

Monoamine neurotransmitter disorders present predominantly with neurologic features, including dystonic or dyskinetic cerebral palsy and movement disorders. Genetic conditions that lead to secondary defects in the synthesis, catabolism, transport, and metabolism of biogenic amines can lead to neurotransmitter abnormalities, which can present with similar features. Eleven patients with secondary neurotransmitter abnormalities were enrolled between 2011 and 2015. All patients underwent research-based whole exome and/or whole genome sequencing (WES/WGS). A trial of treatment with levodopa/carbidopa and 5-hydroxytryptophan was initiated. In six families with abnormal neurotransmitter profiles and neurological phenotypes, variants in known disease-causing genes (KCNJ6, SCN2A, CSTB in 2 siblings, NRNX1, KIF1A and PAK3) were identified, while one patient had a variant of uncertain significance in a candidate gene (DLG4) that may explain her phenotype. In 3 patients, no compelling candidate genes were identified. A trial of neurotransmitter replacement therapy led to improvement in motor and behavioral symptoms in all but two patients. The patient with KCNJ6 variant did not respond to L-dopa therapy, but rather experienced increased dyskinetic movements even at low dose of medication. The patient's symptoms harboring the NRNX1 deletion remained unaltered. This study demonstrates the utility of genome-wide sequencing in further understanding the etiology and pathophysiology of neurometabolic conditions, and the potential of secondary neurotransmitter deficiencies to serve as novel therapeutic targets. As there was a largely favorable response to therapy in our case series, a careful trial of neurotransmitter replacement therapy should be considered in patients with cerebrospinal fluid (CSF) monoamines below reference range.


Subject(s)
Biogenic Amines/metabolism , Levodopa/genetics , Neurotransmitter Agents/cerebrospinal fluid , p21-Activated Kinases/deficiency , Adolescent , Adult , Carbidopa/metabolism , Child , Child, Preschool , Drug Combinations , Female , Humans , Kinesins/metabolism , Levodopa/metabolism , Levodopa/therapeutic use , Male , Young Adult , p21-Activated Kinases/metabolism
3.
Genet Med ; 22(2): 292-300, 2020 02.
Article in English | MEDLINE | ID: mdl-31462755

ABSTRACT

PURPOSE: This study describes the cost trajectory of the standard diagnostic care pathway for children with suspected genetic disorders in British Columbia, Canada. METHODS: Average annual per-patient costs were estimated using medical records review and a caregiver survey for a cohort of 498 children referred to BC Children's and Women's Hospitals (C&W) with unexplained intellectual disability (the TIDE-BC study) and families enrolled in the CAUSES study, which offered diagnostic genome-wide sequencing (GWS; exome and genome sequencing) to 500 families of children with suspected genetic disorders. RESULTS: Direct costs peaked in the first year of patients' diagnostic odyssey, with an average of C$2257 per patient (95% confidence interval [CI] C$2074, C$2441) for diagnostic testing and C$631 (95% CI C$543, C$727) for specialist consultations at C&W. In subsequent years, direct costs accrued at a constant rate, with an estimated annual per-patient cost of C$511 (95% CI C$473, C$551) for diagnostic testing and C$334 (95% CI C$295, C$369) for consultations at C&W. Travel costs and caregiver productivity loss associated with attending diagnosis-related physician appointments averaged C$1907/family/year. CONCLUSIONS: The continuing long-term accrual of costs by undiagnosed patients suggests that economic evaluations of diagnostic GWS services should use longer time horizons than have typically been used.


Subject(s)
Genetic Diseases, Inborn/economics , Genetic Testing/economics , Health Care Costs/trends , Adult , British Columbia/epidemiology , Caregivers/economics , Caregivers/psychology , Cohort Studies , Cost-Benefit Analysis , Exome/genetics , Female , Health Care Costs/ethics , Humans , Intellectual Disability/genetics , Male , Sequence Analysis, DNA/economics , Exome Sequencing/economics , Exome Sequencing/methods
4.
BMC Res Notes ; 12(1): 467, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31366397

ABSTRACT

OBJECTIVES: Current developments in sequencing techniques have enabled rapid and high-throughput generation of sequence data. However, there is a growing gap between the generation of raw sequencing data and the extraction of meaningful biological information. Variant annotation is a crucial step in the analysis of genome sequencing data. Incorrect or incomplete annotations can cause researchers to dilute interesting variants in a pool of false positives. We require consistent, accurate and reliable annotation of variants for making diagnostic and treatment decisions. Current annotation depends on the set of transcripts, and software used can be managed, with sufficient care, in the research context. Careful thought needs to be given to the choice of transcript sets and software packages for variant annotation in sequencing studies. In this project, the main objective is to analyze the genetic variants observed in Pakistani population data within the 1000 genomes project (1KGP). RESULTS: We characterized only SNVs and InDels types of genetic variations, in total ~ 1.4 million variants. Besides this, we also annotated the genetic variants with multiple annotations tools, ANNOVAR and SnpEff and compared the differential results. Our population-specific catalogue will enhance future studies on the functional impact at protein level.


Subject(s)
Genome, Human , INDEL Mutation , Molecular Sequence Annotation/methods , Polymorphism, Single Nucleotide , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Human Genome Project , Humans , Pakistan , Software
5.
Genet Med ; 21(7): 1621-1628, 2019 07.
Article in English | MEDLINE | ID: mdl-30542205

ABSTRACT

PURPOSE: The presentation and etiology of cerebral palsy (CP) are heterogeneous. Diagnostic evaluation can be a prolonged and expensive process that might remain inconclusive. This study aimed to determine the diagnostic yield and impact on management of next-generation sequencing (NGS) in 50 individuals with atypical CP (ACP). METHODS: Patient eligibility criteria included impaired motor function with onset at birth or within the first year of life, and one or more of the following: severe intellectual disability, progressive neurological deterioration, other abnormalities on neurological examination, multiorgan disease, congenital anomalies outside of the central nervous system, an abnormal neurotransmitter profile, family history, brain imaging findings not typical for cerebral palsy. Previous assessment by a neurologist and/or clinical geneticist, including biochemical testing, neuroimaging, and chromosomal microarray, did not yield an etiologic diagnosis. RESULTS: A precise molecular diagnosis was established in 65% of the 50 patients. We also identified candidate disease genes without a current OMIM disease designation. Targeted intervention was enabled in eight families (~15%). CONCLUSION: NGS enabled a molecular diagnosis in ACP cases, ending the diagnostic odyssey, improving genetic counseling and personalized management, all in all enhancing precision medicine practices.


Subject(s)
Cerebral Palsy/diagnosis , Genomics , High-Throughput Nucleotide Sequencing , Precision Medicine , Adult , Cerebral Palsy/genetics , Child , Female , Genetic Association Studies , Humans , Male , Molecular Diagnostic Techniques
6.
Mol Genet Metab ; 123(1): 28-42, 2018 01.
Article in English | MEDLINE | ID: mdl-29331171

ABSTRACT

BACKGROUND: Mitochondrial diseases, a group of multi-systemic disorders often characterized by tissue-specific phenotypes, are usually progressive and fatal disorders resulting from defects in oxidative phosphorylation. MTO1 (Mitochondrial tRNA Translation Optimization 1), an evolutionarily conserved protein expressed in high-energy demand tissues has been linked to human early-onset combined oxidative phosphorylation deficiency associated with hypertrophic cardiomyopathy, often referred to as combined oxidative phosphorylation deficiency-10 (COXPD10). MATERIAL AND METHODS: Thirty five cases of MTO1 deficiency were identified and reviewed through international collaboration. The cases of two female siblings, who presented at 1 and 2years of life with seizures, global developmental delay, hypotonia, elevated lactate and complex I and IV deficiency on muscle biopsy but without cardiomyopathy, are presented in detail. RESULTS: For the description of phenotypic features, the denominator varies as the literature was insufficient to allow for complete ascertainment of all data for the 35 cases. An extensive review of all known MTO1 deficiency cases revealed the most common features at presentation to be lactic acidosis (LA) (21/34; 62% cases) and hypertrophic cardiomyopathy (15/34; 44% cases). Eventually lactic acidosis and hypertrophic cardiomyopathy are described in 35/35 (100%) and 27/34 (79%) of patients with MTO1 deficiency, respectively; with global developmental delay/intellectual disability present in 28/29 (97%), feeding difficulties in 17/35 (49%), failure to thrive in 12/35 (34%), seizures in 12/35 (34%), optic atrophy in 11/21 (52%) and ataxia in 7/34 (21%). There are 19 different pathogenic MTO1 variants identified in these 35 cases: one splice-site, 3 frameshift and 15 missense variants. None have bi-allelic variants that completely inactivate MTO1; however, patients where one variant is truncating (i.e. frameshift) while the second one is a missense appear to have a more severe, even fatal, phenotype. These data suggest that complete loss of MTO1 is not viable. A ketogenic diet may have exerted a favourable effect on seizures in 2/5 patients. CONCLUSION: MTO1 deficiency is lethal in some but not all cases, and a genotype-phenotype relation is suggested. Aside from lactic acidosis and cardiomyopathy, developmental delay and other phenotypic features affecting multiple organ systems are often present in these patients, suggesting a broader spectrum than hitherto reported. The diagnosis should be suspected on clinical features and the presence of markers of mitochondrial dysfunction in body fluids, especially low residual complex I, III and IV activity in muscle. Molecular confirmation is required and targeted genomic testing may be the most efficient approach. Although subjective clinical improvement was observed in a small number of patients on therapies such as ketogenic diet and dichloroacetate, no evidence-based effective therapy exists.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Carrier Proteins/genetics , Hepatic Encephalopathy/genetics , Metabolism, Inborn Errors/genetics , Mitochondrial Diseases/genetics , Adolescent , Biopsy , Brain/diagnostic imaging , Brain/physiopathology , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/physiopathology , Carrier Proteins/metabolism , Child , Child, Preschool , Female , Frameshift Mutation , Hepatic Encephalopathy/diagnostic imaging , Hepatic Encephalopathy/physiopathology , Humans , Infant , Infant, Newborn , Male , Metabolism, Inborn Errors/diagnostic imaging , Metabolism, Inborn Errors/physiopathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/physiopathology , Oxidative Phosphorylation , RNA-Binding Proteins
7.
Pediatr Neurol ; 59: 6-12, 2016 06.
Article in English | MEDLINE | ID: mdl-26995068

ABSTRACT

BACKGROUND: Pyridoxine-dependent epilepsy is a rare autosomal recessive epileptic encephalopathy caused by antiquitin (ALDH7A1) deficiency. In spite of adequate seizure control, 75% of patients suffer intellectual developmental disability. Antiquitin deficiency affects lysine catabolism resulting in accumulation of α-aminoadipic semialdehyde/pyrroline 6' carboxylate and pipecolic acid. Beside neonatal refractory epileptic encephalopathy, numerous neurological manifestations and metabolic/biochemical findings have been reported. METHODS AND RESULTS: We present a phenotypic spectrum of antiquitin deficiency based on a literature review (2006 to 2015) of reports (n = 49) describing the clinical presentation of confirmed patients (n > 200) and a further six patient vignettes. Possible presentations include perinatal asphyxia; neonatal withdrawal syndrome; sepsis; enterocolitis; hypoglycemia; neuroimaging abnormalities (corpus callosum and cerebellar abnormalities, hemorrhage, white matter lesions); biochemical abnormalities (lactic acidosis, electrolyte disturbances, neurotransmitter abnormalities); and seizure response to pyridoxine, pyridoxal-phosphate, and folinic acid dietary interventions. DISCUSSION: The phenotypic spectrum of pyridoxine-dependent epilepsy is wide, including a myriad of neurological and systemic symptoms. Its hallmark feature is refractory seizures during the first year of life. Given its amenability to treatment with lysine-lowering strategies in addition to pyridoxine supplementation for optimal seizure control and developmental outcomes, early diagnosis of pyridoxine-dependent epilepsy is essential. All infants presenting with unexplained seizures should be screened for antiquitin deficiency by determination of α-aminoadipic semialdehyde/pyrroline 6' carboxylate (in urine, plasma or cerebrospinal fluid) and ALDH7A1 molecular analysis.


Subject(s)
Epilepsy/physiopathology , Epilepsy/diagnosis , Epilepsy/genetics , Epilepsy/therapy , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...