Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166718, 2023 08.
Article in English | MEDLINE | ID: mdl-37060964

ABSTRACT

Adaptability to intracellular or extracellular cues is essential for maintaining cellular homeostasis. Metabolic signals intricately control the morphology and functions of mitochondria by regulating bioenergetics and metabolism. Here, we describe the involvement of PHLPP1, a Ser/Thr phosphatase, in mitochondrial homeostasis. Microscopic analysis showed the enhanced globular structure of mitochondria in PHLPP1-depleted HEK 293T and C2C12 cells, while forced expression of PHLPP1 promoted mitochondrial tubularity. We show that PHLPP1 promoted pro-fusion markers MFN2 and p-DRP1Ser637 levels using over-expression and knockdown strategies. Contrastingly, PHLPP1 induced mitochondrial fragmentation by augmenting pro-fission markers, t-DRP1 and pDrp1Ser616 upon mitochondrial stress. At the molecular level, PHLPP1 interacted with and caused dephosphorylation of calcineurin, a p-DRP1Ser637 phosphatase, under basal conditions. Likewise, PHLPP1 dimerized with PINK1 under basal conditions. However, the interaction of PHLPP1 with both calcineurin and PINK1 was impaired upon CCCP and oligomycin-induced mitochondrial stress. Interestingly, upon mitochondrial membrane depolarization, PHLPP1 promoted PINK1 stabilization and parkin recruitment to mitochondria, and thereby activated the mitophagy machinery providing a molecular explanation for the dual effects of PHLPP1 on mitochondria under different conditions. Consistent with our in-vitro findings, depletion of phlp-2, ortholog of PHLPP1 in C. elegans, led to mitochondrial fission under basal conditions, extended the lifespan of the worms, and enhanced survival of worms subjected to paraquat-induced oxidative stress.


Subject(s)
Longevity , Protein Kinases , Animals , Caenorhabditis elegans/metabolism , Calcineurin , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , HEK293 Cells , Humans , Mice
2.
RSC Adv ; 12(27): 17585-17595, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35765449

ABSTRACT

Metal nanoclusters (NCs) composed of the least number of atoms (a few to tens) have become very attractive for their emerging properties owing to their ultrasmall size. Preparing copper nanoclusters (Cu NCs) in an aqueous medium with high emission properties, strong colloidal stability, and low toxicity has been a long-standing challenge. Although Cu NCs are earth-abundant and inexpensive, they have been comparatively less explored due to their various limitations, such as ease of surface oxidation, poor colloidal stability, and high toxicity. To overcome these constraints, we established a facile synthetic route by optimizing the reaction parameters, especially altering the effective concentration of the reducing agent, to influence their optical characteristics. The improvement of the photoluminescence intensity and superior colloidal stability was modeled from a theoretical standpoint. Moreover, the as-synthesized Cu NCs showed a significant reduction of toxicity in both in vitro and in vivo models. The possibility of using such Cu NCs as a diagnostic probe toward C. elegans was explored. Also, the extension of our approach toward improving the photoluminescence intensity of the Cu NCs on other ligand systems was demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...