Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 17: 393-396, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29876407

ABSTRACT

The data in this article provide detail regarding the rat brain atlas measurements discussed in our research article, "Quantitative vascular neuroimaging of the rat brain using superparamagnetic nanoparticles: New insights on vascular organization and brain function" (Gharagouzloo et al., 2017) [1]. This article provides datasets of quantitative cerebral blood volume (qCBV) measurements across 173 regions of the rat brain in 11 healthy rats. State-changes from this baseline during isoflurane and CO2 administration are provided for all regions and all animals.

2.
Neuroimage ; 163: 24-33, 2017 12.
Article in English | MEDLINE | ID: mdl-28889004

ABSTRACT

A method called Quantitative Ultra-Short Time-to-Echo Contrast Enhanced (QUTE-CE) Magnetic Resonance Imaging (MRI) which utilizes superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent to yield positive contrast angiograms with high clarity and definition is applied to the whole live rat brain. QUTE-CE MRI intensity data are particularly well suited for measuring quantitative cerebral blood volume (qCBV). A global map of qCBV in the awake resting-state with unprecedented detail was created via application of a 3D MRI rat brain atlas with 173 segmented and annotated brain areas. From this map we identified two distributed, integrated neural circuits showing the highest capillary densities in the brain. One is the neural circuitry involved with the primary senses of smell, hearing and vision and the other is the neural circuitry of memory. Under isoflurane anesthesia, these same circuits showed significant decreases in qCBV suggesting a role in consciousness. Neural circuits in the brainstem associated with the reticular activating system and the maintenance of respiration, body temperature and cardiovascular function showed an increase in qCBV with anesthesia. During awake CO2 challenge, 84 regions showed significant increases relative to an awake baseline state. This CO2 response provides a measure of cerebral vascular reactivity and regional perfusion reserve with the highest response measured in the somatosensory cortex. These results demonstrate the utility of QUTE-CE MRI for qCBV analysis and offer a new perspective on brain function and vascular organization.


Subject(s)
Brain Mapping/methods , Brain/blood supply , Brain/diagnostic imaging , Cerebral Angiography/methods , Magnetite Nanoparticles , Animals , Blood Volume/physiology , Blood Volume Determination/methods , Cerebrovascular Circulation/physiology , Ferric Compounds , Magnetic Resonance Imaging/methods , Rats , Rats, Sprague-Dawley
3.
Sci Rep ; 7(1): 7850, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28798327

ABSTRACT

Stem cell tracking in cellular therapy and regenerative medicine is an urgent need, superparamagnetic iron oxide nanoparticles (IONPs) could be used as contrast agents in magnetic resonance imaging (MRI) that allows visualization of the implanted cells ensuring they reach the desired sites in vivo. Herein, we report the study of the interaction of 3,4-dihydroxyhydrocinnamic acid (DHCA) functionalized IONPs that have desirable properties for T2 - weighted MRI, with bone marrow-derived primary human mesenchymal stem cells (hMSCs). Using the multiparametric high-content imaging method, we evaluate cell viability, formation of reactive oxygen species, mitochondrial health, as well as cell morphology and determine that the hMSCs are minimally affected after labelling with IONPs. Their cellular uptake is visualized by transmission electron microscopy (TEM) and Prussian Blue staining, and quantified using an iron specific colourimetric method. In vitro and in vivo studies demonstrate that these IONPs are biocompatible and can produce significant contrast enhancement in T2-weighted MRI. Iron oxide nanoparticles are detected in vivo as hypointense regions in the liver up to two weeks post injection using 9.4 T MRI. These DHCA functionalized IONPs are promising contrast agents for stem cell tracking by T2-weighted MRI as they are biocompatible and show no evidence of cytotoxic effects on hMSCs.


Subject(s)
Cell Tracking/methods , Contrast Media/metabolism , Ferric Compounds/metabolism , Intravital Microscopy/methods , Magnetic Resonance Imaging/methods , Mesenchymal Stem Cells/metabolism , Nanoparticles/metabolism , Cell Shape/drug effects , Cell Survival/drug effects , Colorimetry , Contrast Media/toxicity , Ferric Compounds/toxicity , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Microscopy, Electron, Transmission , Mitochondria/drug effects , Mitochondria/physiology , Nanoparticles/toxicity , Reactive Oxygen Species/analysis , Staining and Labeling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...