Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067848

ABSTRACT

Air writing is one of the essential fields that the world is turning to, which can benefit from the world of the metaverse, as well as the ease of communication between humans and machines. The research literature on air writing and its applications shows significant work in English and Chinese, while little research is conducted in other languages, such as Arabic. To fill this gap, we propose a hybrid model that combines feature extraction with deep learning models and then uses machine learning (ML) and optical character recognition (OCR) methods and applies grid and random search optimization algorithms to obtain the best model parameters and outcomes. Several machine learning methods (e.g., neural networks (NNs), random forest (RF), K-nearest neighbours (KNN), and support vector machine (SVM)) are applied to deep features extracted from deep convolutional neural networks (CNNs), such as VGG16, VGG19, and SqueezeNet. Our study uses the AHAWP dataset, which consists of diverse writing styles and hand sign variations, to train and evaluate the models. Prepossessing schemes are applied to improve data quality by reducing bias. Furthermore, OCR character (OCR) methods are integrated into our model to isolate individual letters from continuous air-written gestures and improve recognition results. The results of this study showed that the proposed model achieved the best accuracy of 88.8% using NN with VGG16.

2.
Article in English | MEDLINE | ID: mdl-36901430

ABSTRACT

The current outbreak of monkeypox (mpox) has become a major public health concern because of the quick spread of this disease across multiple countries. Early detection and diagnosis of mpox is crucial for effective treatment and management. Considering this, the purpose of this research was to detect and validate the best performing model for detecting mpox using deep learning approaches and classification models. To achieve this goal, we evaluated the performance of five common pretrained deep learning models (VGG19, VGG16, ResNet50, MobileNetV2, and EfficientNetB3) and compared their accuracy levels when detecting mpox. The performance of the models was assessed with metrics (i.e., the accuracy, recall, precision, and F1-score). Our experimental results demonstrate that the MobileNetV2 model had the best classification performance with an accuracy level of 98.16%, a recall of 0.96, a precision of 0.99, and an F1-score of 0.98. Additionally, validation of the model with different datasets showed that the highest accuracy of 0.94% was achieved using the MobileNetV2 model. Our findings indicate that the MobileNetV2 method outperforms previous models described in the literature in mpox image classification. These results are promising, as they show that machine learning techniques could be used for the early detection of mpox. Our algorithm was able to achieve a high level of accuracy in classifying mpox in both the training and test sets, making it a potentially valuable tool for quick and accurate diagnosis in clinical settings.


Subject(s)
Deep Learning , Mpox (monkeypox) , Skin Diseases , Humans , Algorithms , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...