Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(2): 023202, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37505939

ABSTRACT

Bulk-edge correspondence, with quantized bulk topology leading to protected edge states, is a hallmark of topological states of matter and has been experimentally observed in electronic, atomic, photonic, and many other systems. While bulk-edge correspondence has been extensively studied in Hermitian systems, a non-Hermitian bulk could drastically modify the Hermitian topological band theory due to the interplay between non-Hermiticity and topology, and its effect on bulk-edge correspondence is still an ongoing pursuit. Importantly, including non-Hermicity can significantly expand the horizon of topological states of matter and lead to a plethora of unique properties and device applications, an example of which is a topological laser. However, the bulk topology, and thereby the bulk-edge correspondence, in existing topological edge-mode lasers is not well defined. Here, we propose and experimentally probe topological edge-mode lasing with a well-defined non-Hermitian bulk topology in a one-dimensional (1D) array of coupled ring resonators. By modeling the Hamiltonian with an additional degree of freedom (referred to as synthetic dimension), our 1D structure is equivalent to a 2D non-Hermitian Chern insulator with precise mapping. Our Letter may open a new pathway for probing non-Hermitian topological effects and exploring non-Hermitian topological device applications.

2.
ACS Nano ; 12(11): 10968-10976, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30383358

ABSTRACT

Solution-processed organic-inorganic lead halide perovskites have recently emerged as promising gain media for tunable semiconductor lasers. However, optically pumped continuous-wave lasing at room temperature, a prerequisite for a laser diode, has not been realized so far. Here, we report lasing action in a surface-emitting distributed feedback methylammonium lead iodide (MAPbI3) perovskite laser on a silicon substrate at room temperature under continuous-wave optical pumping. This outstanding performance is achieved because of the ultralow lasing threshold of 13 W/cm2, which is enabled by thermal nanoimprint lithography that directly patterns perovskite into a high- Q cavity with large mode confinement, while at the same time, it improves perovskite's emission characteristics. Our results represent a major step toward electrically pumped lasing in organic and thin-film materials as well as the insertion of perovskite lasers into photonic integrated circuits for applications in optical computing, sensing, and on-chip quantum information.

3.
Opt Lett ; 43(3): 611-614, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29400853

ABSTRACT

We report a directly patterned perovskite distributed feedback (DFB) resonator and show narrow amplified spontaneous emission (ASE) at pump powers as low as 0.1 W/cm2 under continuous-wave (CW) optical pumping conditions at room temperature. Compared to the pristine thin film photoluminescence spectrum, a 16-fold reduction in emission linewidth in the MAPbI3 DFB cavity was observed. The direct nanostructuring of perovskites was achieved by thermal nanoimprint lithography. Our findings pave the way toward realizing CW pumped perovskite lasers at room temperature and energy-efficient perovskite light sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...