Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
NAR Genom Bioinform ; 6(3): lqae073, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38974799

ABSTRACT

Data from the single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) are now widely available. One major computational challenge is dealing with high dimensionality and inherent sparsity, which is typically addressed by producing lower dimensional representations of single cells for downstream clustering tasks. Current approaches produce such individual cell embeddings directly through a one-step learning process. Here, we propose an alternative approach by building embedding models pre-trained on reference data. We argue that this provides a more flexible analysis workflow that also has computational performance advantages through transfer learning. We implemented our approach in scEmbed, an unsupervised machine-learning framework that learns low-dimensional embeddings of genomic regulatory regions to represent and analyze scATAC-seq data. scEmbed performs well in terms of clustering ability and has the key advantage of learning patterns of region co-occurrence that can be transferred to other, unseen datasets. Moreover, models pre-trained on reference data can be exploited to build fast and accurate cell-type annotation systems without the need for other data modalities. scEmbed is implemented in Python and it is available to download from GitHub. We also make our pre-trained models available on huggingface for public use. scEmbed is open source and available at https://github.com/databio/geniml. Pre-trained models from this work can be obtained on huggingface: https://huggingface.co/databio.

2.
Bioengineering (Basel) ; 11(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38534537

ABSTRACT

As available genomic interval data increase in scale, we require fast systems to search them. A common approach is simple string matching to compare a search term to metadata, but this is limited by incomplete or inaccurate annotations. An alternative is to compare data directly through genomic region overlap analysis, but this approach leads to challenges like sparsity, high dimensionality, and computational expense. We require novel methods to quickly and flexibly query large, messy genomic interval databases. Here, we develop a genomic interval search system using representation learning. We train numerical embeddings for a collection of region sets simultaneously with their metadata labels, capturing similarity between region sets and their metadata in a low-dimensional space. Using these learned co-embeddings, we develop a system that solves three related information retrieval tasks using embedding distance computations: retrieving region sets related to a user query string, suggesting new labels for database region sets, and retrieving database region sets similar to a query region set. We evaluate these use cases and show that jointly learned representations of region sets and metadata are a promising approach for fast, flexible, and accurate genomic region information retrieval.

3.
Bioinformatics ; 37(23): 4299-4306, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34156475

ABSTRACT

MOTIVATION: Genomic region sets summarize functional genomics data and define locations of interest in the genome such as regulatory regions or transcription factor binding sites. The number of publicly available region sets has increased dramatically, leading to challenges in data analysis. RESULTS: We propose a new method to represent genomic region sets as vectors, or embeddings, using an adapted word2vec approach. We compared our approach to two simpler methods based on interval unions or term frequency-inverse document frequency and evaluated the methods in three ways: First, by classifying the cell line, antibody or tissue type of the region set; second, by assessing whether similarity among embeddings can reflect simulated random perturbations of genomic regions; and third, by testing robustness of the proposed representations to different signal thresholds for calling peaks. Our word2vec-based region set embeddings reduce dimensionality from more than a hundred thousand to 100 without significant loss in classification performance. The vector representation could identify cell line, antibody and tissue type with over 90% accuracy. We also found that the vectors could quantitatively summarize simulated random perturbations to region sets and are more robust to subsampling the data derived from different peak calling thresholds. Our evaluations demonstrate that the vectors retain useful biological information in relatively lower-dimensional spaces. We propose that vector representation of region sets is a promising approach for efficient analysis of genomic region data. AVAILABILITY AND IMPLEMENTATION: https://github.com/databio/regionset-embedding. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...