Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
2.
Biomedicines ; 12(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38672223

ABSTRACT

To date, studies assessing the safety profile of 3D printing materials for application in cardiac ablation are sparse. Our aim is to evaluate the safety and feasibility of two biocompatible 3D printing materials, investigating their potential use for intra-procedural guides to navigate surgical cardiac arrhythmia ablation. Herein, we 3D printed various prototypes in varying thicknesses (0.8 mm-3 mm) using a resin (MED625FLX) and a thermoplastic polyurethane elastomer (TPU95A). Geometrical testing was performed to assess the material properties pre- and post-sterilization. Furthermore, we investigated the thermal propagation behavior beneath the 3D printing materials during cryo-energy and radiofrequency ablation using an in vitro wet-lab setup. Moreover, electron microscopy and Raman spectroscopy were performed on biological tissue that had been exposed to the 3D printing materials to assess microparticle release. Post-sterilization assessments revealed that MED625FLX at thicknesses of 1 mm, 2.5 mm, and 3 mm, along with TPU95A at 1 mm and 2.5 mm, maintained geometrical integrity. Thermal analysis revealed that material type, energy source, and their factorial combination with distance from the energy source significantly influenced the temperatures beneath the 3D-printed material. Electron microscopy revealed traces of nitrogen and sulfur underneath the MED625FLX prints (1 mm, 2.5 mm) after cryo-ablation exposure. The other samples were uncontaminated. While Raman spectroscopy did not detect material release, further research is warranted to better understand these findings for application in clinical settings.

3.
J Am Heart Assoc ; 13(3): e031489, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38240222

ABSTRACT

BACKGROUND: Embolic stroke of unknown source (ESUS) accounts for 1 in 6 ischemic strokes. Current guidelines do not recommend routine cardiac magnetic resonance (CMR) imaging in ESUS, and beyond the identification of cardioembolic sources, there are no data assessing new clinical findings from CMR in ESUS. This study aimed to assess the prevalence of new cardiac and noncardiac findings and to determine their impact on clinical care in patients with ESUS. METHODS AND RESULTS: In this prospective, multicenter, observational study, CMR imaging was performed within 3 months of ESUS. All scans were reported according to standard clinical practice. A new clinical finding was defined as one not previously identified through prior clinical evaluation. A clinically significant finding was defined as one resulting in further investigation, follow-up, or treatment. A change in patient care was defined as initiation of medical, interventional, surgical, or palliative care. From 102 patients recruited, 96 underwent CMR imaging. One or more new clinical findings were observed in 59 patients (61%). New findings were clinically significant in 48 (81%) of these patients. Of 40 patients with a new clinically significant cardiac finding, 21 (53%) experienced a change in care (medical therapy, n=15; interventional/surgical procedure, n=6). In 12 patients with a new clinically significant extracardiac finding, 6 (50%) experienced a change in care (medical therapy, n=4; palliative care, n=2). CONCLUSIONS: CMR imaging identifies new clinically significant cardiac and noncardiac findings in half of patients with recent ESUS. Advanced cardiovascular screening should be considered in patients with ESUS. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04555538.


Subject(s)
Embolic Stroke , Intracranial Embolism , Stroke , Humans , Stroke/diagnostic imaging , Stroke/epidemiology , Prevalence , Prospective Studies , Magnetic Resonance Imaging , Intracranial Embolism/diagnostic imaging , Intracranial Embolism/epidemiology , Risk Factors
4.
Europace ; 25(12)2023 12 06.
Article in English | MEDLINE | ID: mdl-38064697

ABSTRACT

AIMS: Catheter ablation (CA) is an established treatment for atrial fibrillation (AF). A computed tomography (CT) may be performed before ablation to evaluate the anatomy of pulmonary veins. The aim of this study is to investigate the prevalence of patients with coronary artery disease (CAD) detected by cardiac CT scan pre-ablation and to evaluate the impact of CAD and revascularization on outcomes after AF ablation. METHODS AND RESULTS: All consecutive patients with AF diagnosis, hospitalized at Universitair Ziekenhuis Brussel, Belgium, between 2015 and 2019, were prospectively screened for enrolment in the study. Inclusion criteria were (i) AF diagnosis, (ii) first procedure of AF ablation with cryoballoon CA, and (iii) contrast CT scan performed pre-ablation. A total of 576 consecutive patients were prospectively included and analysed in this study. At CT scan, 122 patients (21.2%) were diagnosed with CAD, of whom 41 patients (7.1%) with critical CAD. At survival analysis, critical CAD at CT scan was a predictor of atrial tachyarrhythmia (AT) recurrence during the follow-up, only in Cox univariate analysis [hazard ratio (HR) = 1.79] but was not an independent predictor in Cox multivariate analysis. At Cox multivariate analysis, independent predictors of AT recurrence were as follows: persistent AF (HR = 2.93) and left atrium volume index (HR = 1.04). CONCLUSION: In patients undergoing CT scan before AF ablation, critical CAD was diagnosed in 7.1% of patients. Coronary artery disease and revascularization were not independent predictors of recurrence; thus, in this patient population, AF ablation should not be denied and can be performed together with CAD treatment.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Coronary Artery Disease , Pulmonary Veins , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Atrial Fibrillation/surgery , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Coronary Artery Disease/surgery , Treatment Outcome , Heart Atria , Catheter Ablation/adverse effects , Catheter Ablation/methods , Pulmonary Veins/diagnostic imaging , Pulmonary Veins/surgery , Recurrence
5.
Europace ; 25(11)2023 11 02.
Article in English | MEDLINE | ID: mdl-37944131

ABSTRACT

AIMS: Brugada syndrome (BrS) is an inherited disease associated with an increased risk of ventricular arrhythmias. Recent studies have reported the presence of an altered atrial phenotype characterized by abnormal P-wave parameters. The aim of this study was to identify BrS based exclusively on P-wave features through an artificial intelligence (AI)-based model. METHODS AND RESULTS: Continuous 5 min 12-lead ECG recordings were obtained in sinus rhythm from (i) patients with spontaneous or ajmaline-induced BrS and no history of AF and (ii) subjects with suspected BrS and negative ajmaline challenge. The recorded ECG signals were processed and divided into epochs of 15 s each. Within these epochs, P-waves were first identified and then averaged. From the averaged P-waves, a total of 67 different features considered relevant to the classification task were extracted. These features were then used to train nine different AI-based supervised classifiers. A total of 2228 averaged P-wave observations, resulting from the analysis of 33 420 P-waves, were obtained from 123 patients (79 BrS+ and 44 BrS-). Averaged P-waves were divided using a patient-wise split, allocating 80% for training and 20% for testing, ensuring data integrity and reducing biases in AI-based model training. The BrS+ patients presented with longer P-wave duration (136 ms vs. 124 ms, P < 0.001) and higher terminal force in lead V1 (2.5 au vs. 1.7 au, P < 0.01) compared with BrS- subjects. Among classifiers, AdaBoost model had the highest values of performance for all the considered metrics, reaching an accuracy of over 81% (sensitivity 86%, specificity 73%). CONCLUSION: An AI machine-learning model is able to identify patients with BrS based only on P-wave characteristics. These findings confirm the presence of an atrial hallmark and open new horizons for AI-guided BrS diagnosis.


Subject(s)
Atrial Fibrillation , Brugada Syndrome , Humans , Atrial Fibrillation/chemically induced , Artificial Intelligence , Ajmaline/adverse effects , Electrocardiography/methods
6.
Comput Biol Med ; 162: 107009, 2023 08.
Article in English | MEDLINE | ID: mdl-37301099

ABSTRACT

This work presents an open-source software pipeline to create patient-specific left atrial models with fibre orientations and a fibrDEFAULTosis map, suitable for electrophysiology simulations, and quantifies the intra and inter observer reproducibility of the model creation. The semi-automatic pipeline takes as input a contrast enhanced magnetic resonance angiogram, and a late gadolinium enhanced (LGE) contrast magnetic resonance (CMR). Five operators were allocated 20 cases each from a set of 50 CMR datasets to create a total of 100 models to evaluate inter and intra-operator variability. Each output model consisted of: (1) a labelled surface mesh open at the pulmonary veins and mitral valve, (2) fibre orientations mapped from a diffusion tensor MRI (DTMRI) human atlas, (3) fibrosis map extracted from the LGE-CMR scan, and (4) simulation of local activation time (LAT) and phase singularity (PS) mapping. Reproducibility in our pipeline was evaluated by comparing agreement in shape of the output meshes, fibrosis distribution in the left atrial body, and fibre orientations. Reproducibility in simulations outputs was evaluated in the LAT maps by comparing the total activation times, and the mean conduction velocity (CV). PS maps were compared with the structural similarity index measure (SSIM). The users processed in total 60 cases for inter and 40 cases for intra-operator variability. Our workflow allows a single model to be created in 16.72 ± 12.25 min. Similarity was measured with shape, percentage of fibres oriented in the same direction, and intra-class correlation coefficient (ICC) for the fibrosis calculation. Shape differed noticeably only with users' selection of the mitral valve and the length of the pulmonary veins from the ostia to the distal end; fibrosis agreement was high, with ICC of 0.909 (inter) and 0.999 (intra); fibre orientation agreement was high with 60.63% (inter) and 71.77% (intra). The LAT showed good agreement, where the median ± IQR of the absolute difference of the total activation times was 2.02 ± 2.45 ms for inter, and 1.37 ± 2.45 ms for intra. Also, the average ± sd of the mean CV difference was -0.00404 ± 0.0155 m/s for inter, and 0.0021 ± 0.0115 m/s for intra. Finally, the PS maps showed a moderately good agreement in SSIM for inter and intra, where the mean ± sd SSIM for inter and intra were 0.648 ± 0.21 and 0.608 ± 0.15, respectively. Although we found notable differences in the models, as a consequence of user input, our tests show that the uncertainty caused by both inter and intra-operator variability is comparable with uncertainty due to estimated fibres, and image resolution accuracy of segmentation tools.


Subject(s)
Atrial Fibrillation , Humans , Atrial Fibrillation/diagnostic imaging , Reproducibility of Results , Heart Atria/diagnostic imaging , Heart Atria/pathology , Magnetic Resonance Imaging/methods , Fibrosis , Predictive Value of Tests
7.
J Clin Med ; 12(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37176490

ABSTRACT

There is increasing evidence to suggest that atrial fibrillation is associated with a heightened risk of dementia. The mechanism of interaction is unclear. Atrial fibrillation-induced cerebral infarcts, hypoperfusion, systemic inflammation, and anticoagulant therapy-induced cerebral microbleeds, have been proposed to explain the link between these conditions. An understanding of the pathogenesis of atrial fibrillation-associated cognitive decline may enable the development of treatment strategies targeted towards the prevention of dementia in atrial fibrillation patients. The aim of this review is to explore the impact that existing atrial fibrillation treatment strategies may have on cognition and the putative mechanisms linking the two conditions. This review examines how components of the 'Atrial Fibrillation Better Care pathway' (stroke risk reduction, rhythm control, rate control, and risk factor management) may influence the trajectory of atrial fibrillation-associated cognitive decline. The requirements for further prospective studies to understand the mechanistic link between atrial fibrillation and dementia and to develop treatment strategies targeted towards the prevention of atrial fibrillation-associated cognitive decline, are highlighted.

8.
J Cardiovasc Comput Tomogr ; 17(3): 166-176, 2023.
Article in English | MEDLINE | ID: mdl-36966040

ABSTRACT

The clinical spectrum of atrial fibrillation means that a patient-individualized approach is required to ensure optimal treatment. Cardiac computed tomography can accurately delineate atrial structure and function and could contribute to a personalized care pathway for atrial fibrillation patients. The imaging modality offers excellent spatial resolution and has been utilised in pre-, peri- and post-procedural care for patients with atrial fibrillation. Advances in temporal resolution, acquisition times and analysis techniques suggest potential expanding roles for cardiac computed tomography in the future management of patients with atrial fibrillation. The aim of the current review is to discuss the use of cardiac computed tomography in atrial fibrillation in pre-, peri- and post-procedural settings. Potential future applications of cardiac computed tomography including atrial wall thickness assessment and epicardial fat volume quantification are discussed together with emerging analysis techniques including computational modelling and machine learning with attention paid to how these developments may contribute to a personalized approach to atrial fibrillation management.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Humans , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/therapy , Predictive Value of Tests , Heart Atria , Tomography, X-Ray Computed , Pericardium , Treatment Outcome
9.
J Cardiovasc Dev Dis ; 10(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36826578

ABSTRACT

BACKGROUND: This study aims to get an effective machine learning (ML) prediction model of new-onset postoperative atrial fibrillation (POAF) following coronary artery bypass grafting (CABG) and to highlight the most relevant clinical factors. METHODS: Four ML algorithms were employed to analyze 394 patients undergoing CABG, and their performances were compared: Multivariate Adaptive Regression Spline, Neural Network, Random Forest, and Support Vector Machine. Each algorithm was applied to the training data set to choose the most important features and to build a predictive model. The better performance for each model was obtained by a hyperparameters search, and the Receiver Operating Characteristic Area Under the Curve metric was selected to choose the best model. The best instances of each model were fed with the test data set, and some metrics were generated to assess the performance of the models on the unseen data set. A traditional logistic regression was also performed to be compared with the machine learning models. RESULTS: Random Forest model showed the best performance, and the top five predictive features included age, preoperative creatinine values, time of aortic cross-clamping, body surface area, and Logistic Euro-Score. CONCLUSIONS: The use of ML for clinical predictions requires an accurate evaluation of the models and their hyperparameters. Random Forest outperformed all other models in the clinical prediction of POAF following CABG.

10.
J Clin Med ; 12(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36769681

ABSTRACT

Background: The lack of thermally and mechanically performant biomaterials represents the major limit for 3D-printed surgical guides, aimed at facilitating complex surgery and ablations. Methods: Cryosurgery is a treatment for cardiac arrhythmias. It consists of obtaining cryolesions, by freezing the target tissue, resulting in selective and irreversible damage. MED625FLX and TPU95A are two biocompatible materials for surgical guides; however, there are no data on their response to cryoenergy delivery. The study purpose is to evaluate the biomaterials' thermal properties, examining the temperature changes on the porcine muscle samples (PMS) when the biomaterials are in place during the cryoablation. Two biomaterials were selected, MED625FLX and TPU95A, with two thicknesses (1.0 and 2.5 mm). To analyze the biomaterials' behavior, the PMS temperatures were measured during cryoablation, firstly without biomaterials (control) and after with the biomaterials in place. To verify the biomaterials' suitability, the temperatures under the biomaterial samples should not exceed a limit of -30.0 °C. Furthermore, the biomaterials' geometry after cryoablation was evaluated using the grid paper test. Results: TPU95A (1.0 and 2.5 mm) successfully passed all tests, making this material suitable for cryoablation treatment. MED625FLX of 1.0 mm did not retain its shape, losing its function according to the grid paper test. Further, MED625FLX of 2.5 mm is also suitable for use with a cryoenergy source. Conclusions: TPU95A (1.0 and 2.5 mm) and MED625FLX of 2.5 mm could be used in the design of surgical guides for cryoablation treatment, because of their mechanical, geometrical, and thermal properties. The positive results from the thermal tests on these materials and their thickness prompt further clinical investigation.

11.
Front Bioeng Biotechnol ; 11: 1044647, 2023.
Article in English | MEDLINE | ID: mdl-36714012

ABSTRACT

Background: In the field of medicine, photogrammetry has played for long time a marginal role due to the significant amount of work required that made it impractical for an extended medical use. Developments in digital photogrammetry occurred in the recent years, that have steadily increased the interest and application of this technique. The present study aims to compare photogrammetry reconstruction of heart with computed tomography (CT) as a reference. Methods: The photogrammetric reconstructions of digital images from ECG imaging derived images were performed. In particular, the ventricles of 15 patients with Brugada syndrome were reconstructed by using the free Zephyr Lite software. In order to evaluate the accuracy of the technique, measurements on the reconstructions were compared to patient-specific CT scan imported in ECG imaging software UZBCIT. Result: The results showed that digital photogrammetry in the context of ventricle reconstruction is feasible. The photogrammetric derived measurements of ventricles were not statistically different from CT scan measurements. Furthermore, the analysis showed high correlation of photogrammetry reconstructions with CT scan and a correlation coefficient close to 1. Conclusion: It is possible to reproduce digital objects by photogrammetry if the process described in this study is performed. The reconstruction of the ventricles from CT scan was very close to the values of the respective photogrammetric reconstruction.

12.
Front Cardiovasc Med ; 9: 1029816, 2022.
Article in English | MEDLINE | ID: mdl-36465435

ABSTRACT

Background: 3D printing technology development in medical fields allows to create 3D models to assist preoperative planning and support surgical procedures. Cardiac ischemic scar is clinically associated with malignant arrhythmias. Catheter ablation is aimed at eliminating the arrhythmogenic tissue until the sinus rhythm is restored. The scope of this work is to describe the workflow for a 3D surgical guide able to define the ischemic scar and target catheter ablation. Materials and methods: For the patient-specific 3D surgical guide and 3D heart phantom model realization, both CT scan and cardiac MRI images were processed; this was necessary to extract anatomical structures and pathological information, respectively. Medical images were uploaded and processed in 3D Slicer. For the surgical guide modeling, images from CT scan and MRI were loaded in Meshmixer and merged. For the heart phantom realization, only the CT segmentation was loaded in Meshmixer. The surgical guide was printed in MED625FLX with Polyjet technology. The heart phantom was printed in polylactide with FDM technology. Results: 3D-printed surgical model was in agreement with prespecified imputed measurements. The phantom fitting test showed high accuracy of the 3D surgical tool compared with the patient-specific reproduced heart. Anatomical references in the surgical guide ensured good stability. Ablation catheter fitting test showed high suitability of the guide for different ablation tools. Conclusion: A 3D-printed guide for ventricular tachycardia ablation is feasible and accurate in terms of measurements, stability, and geometrical structure. Concerning clinical use, further clinical investigations are eagerly awaited.

13.
Front Cardiovasc Med ; 9: 1029685, 2022.
Article in English | MEDLINE | ID: mdl-36457802

ABSTRACT

Background: Brugada syndrome (BrS) is a disease associated with ventricular arrhythmias and sudden cardiac death. Epicardial ablation has demonstrated high therapeutic efficacy in preventing ventricular arrhythmias. The purpose of this research is to define a workflow to create a patient-specific 3D-printed tool to be used as a surgical guide for epicardial ablation in BrS. Methods: Due to their mechanical properties and biocompatibility, the MED625FLX and TPU95A were used for cardiac 3D surgical guide printing. ECG imaging was used to define the target region on the right ventricular outflow tract (RVOT). CT scan imaging was used to design the model based on patient anatomy. A 3D patient-specific heart phantom was also printed for fitting test. Sterilization test was finally performed. Results: 3D printed surgical models with both TPU95A and MED625FLX models were in agreement with pre-specified imputed measurements. The phantom test showed retention of shape and correct fitting of the surgical tool to the reproduced phantom anatomy, as expected, for both materials. The surgical guide adapted to both the RVOT and the left anterior descending artery. Two of the 3D models produced in MED265FLX showed damage due to the sterilization process. Conclusions: A 3D printed patient-specific surgical guide for epicardial substrate ablation in BrS is feasible if a specific workflow is followed. The design of the 3D surgical guide ensures proper fitting on the heart phantom with good stability. Further investigations for clinical use are eagerly awaited.

14.
Front Cardiovasc Med ; 9: 978333, 2022.
Article in English | MEDLINE | ID: mdl-36186978

ABSTRACT

Background: Due to their mechanical properties, the MED625FLX and TPU95A could be appropriate candidates for cardiac 3D surgical guide use during radiofrequency ablation (RFA) treatment. Methods: RFA aims to destroy the heart tissue, which cause arrhythmias, by applying a radiofrequency (RF) energy at critical temperature above +50.0°C, where the thermal damage is considered not reversible. This study aims to analyze the biomaterials thermal properties with different thicknesses, by testing the response to bipolar and unipolar RFA on porcine muscle samples (PMS), expressed in temperature. For the materials evaluation, the tissue temperature during RFA applications was recorded, firstly without (control) and after with the biomaterials in position. The biomaterials were considered suitable for the RFA treatment if: (1) the PMS temperatures with the samples were not statistically different compared with the control; (2) the temperatures never reached the threshold; (3) no geometrical changes after RFA were observed. Results: Based on these criteria, none of the tested biomaterials resulted appropriate for unipolar RFA and the TPU95A failed almost all thermal tests also with the bipolar RFA. The 1.0 mm MED625FLX was modified by bipolar RFA in shape, losing its function. Instead, the 2.5 mm MED625FLX was considered suitable for bipolar RFA catheter use only. Conclusions: The 2.5 mm MED625FLX could be used, in the design of surgical guides for RFA bipolar catheter only, because of mechanical, geometrical, and thermal properties. None of biomaterials tested are appropriate for unipolar ablation catheter because of temperature concerns. Further investigations for clinical use are eagerly awaited.

15.
Bioengineering (Basel) ; 9(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35621457

ABSTRACT

Patient-specific three-dimensional (3D) printed models have been increasingly used in many medical fields, including cardiac surgery for which they are used as planning and communication tools. To locate and plan the correct region of interest for the bypass placement during coronary artery bypass graft (CABG) surgery, cardiac surgeons can pre-operatively rely on different medical images. This article aims to present a workflow for the production of a patient-specific 3D-printed surgical guide, from data acquisition and image segmentation to final prototyping. The aim of this surgical guide is to help visualize the region of interest for bypass placement during the operation, through the use of dedicated surgical holes. The results showed the feasibility of this surgical guide in terms of design and fitting to the phantom. Further studies are needed to assess material biocompatibility and technical properties.

16.
Front Physiol ; 13: 757159, 2022.
Article in English | MEDLINE | ID: mdl-35330935

ABSTRACT

Computational models of atrial fibrillation have successfully been used to predict optimal ablation sites. A critical step to assess the effect of an ablation pattern is to pace the model from different, potentially random, locations to determine whether arrhythmias can be induced in the atria. In this work, we propose to use multi-fidelity Gaussian process classification on Riemannian manifolds to efficiently determine the regions in the atria where arrhythmias are inducible. We build a probabilistic classifier that operates directly on the atrial surface. We take advantage of lower resolution models to explore the atrial surface and combine seamlessly with high-resolution models to identify regions of inducibility. We test our methodology in 9 different cases, with different levels of fibrosis and ablation treatments, totalling 1,800 high resolution and 900 low resolution simulations of atrial fibrillation. When trained with 40 samples, our multi-fidelity classifier that combines low and high resolution models, shows a balanced accuracy that is, on average, 5.7% higher than a nearest neighbor classifier. We hope that this new technique will allow faster and more precise clinical applications of computational models for atrial fibrillation. All data and code accompanying this manuscript will be made publicly available at: https://github.com/fsahli/AtrialMFclass.

17.
Europace ; 23(23 Suppl 1): i63-i70, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33751078

ABSTRACT

AIMS: Electric conduction in the atria is direction-dependent, being faster in fibre direction, and possibly heterogeneous due to structural remodelling. Intracardiac recordings of atrial activation may convey such information, but only with high-quality data. The aim of this study was to apply a patient-specific approach to enable such assessment even when data are scarce, noisy, and incomplete. METHODS AND RESULTS: Contact intracardiac recordings in the left atrium from nine patients who underwent ablation therapy were collected before pulmonary veins isolation and retrospectively included in the study. The Personalized Inverse Eikonal Model from cardiac Electro-Anatomical Maps (PIEMAP), previously developed, has been used to reconstruct the conductivity tensor from sparse recordings of the activation. Regional fibre direction and conduction velocity were estimated from the fitted conductivity tensor and extensively cross-validated by clustered and sparse data removal. Electrical conductivity was successfully reconstructed in all patients. Cross-validation with respect to the measurements was excellent in seven patients (Pearson correlation r > 0.93) and modest in two patients (r = 0.62 and r = 0.74). Bland-Altman analysis showed a neglectable bias with respect to the measurements and the limit-of-agreement at -22.2 and 23.0 ms. Conduction velocity in the fibre direction was 82 ± 25 cm/s, whereas cross-fibre velocity was 46 ± 7 cm/s. Anisotropic ratio was 1.91±0.16. No significant inter-patient variability was observed. Personalized Inverse Eikonal model from cardiac Electro-Anatomical Maps correctly predicted activation times in late regions in all patients (r = 0.88) and was robust to a sparser dataset (r = 0.95). CONCLUSION: Personalized Inverse Eikonal model from cardiac Electro-Anatomical Maps offers a novel approach to extrapolate the activation in unmapped regions and to assess conduction properties of the atria. It could be seamlessly integrated into existing electro-anatomic mapping systems. Personalized Inverse Eikonal model from cardiac Electro-Anatomical Maps also enables personalization of cardiac electrophysiology models.


Subject(s)
Atrial Fibrillation , Pulmonary Veins , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Heart Atria/surgery , Humans , Pulmonary Veins/surgery , Retrospective Studies
18.
Europace ; 23(23 Suppl 1): i161-i168, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33751085

ABSTRACT

AIMS: Recent clinical studies showed that antiarrhythmic drug (AAD) treatment and pulmonary vein isolation (PVI) synergistically reduce atrial fibrillation (AF) recurrences after initially successful ablation. Among newly developed atrial-selective AADs, inhibitors of the G-protein-gated acetylcholine-activated inward rectifier current (IKACh) were shown to effectively suppress AF in an experimental model but have not yet been evaluated clinically. We tested in silico whether inhibition of inward rectifier current or its combination with PVI reduces AF inducibility. METHODS AND RESULTS: We simulated the effect of inward rectifier current blockade (IK blockade), PVI, and their combination on AF inducibility in a detailed three-dimensional model of the human atria with different degrees of fibrosis. IK blockade was simulated with a 30% reduction of its conductivity. Atrial fibrillation was initiated using incremental pacing applied at 20 different locations, in both atria. IK blockade effectively prevented AF induction in simulations without fibrosis as did PVI in simulations without fibrosis and with moderate fibrosis. Both interventions lost their efficacy in severe fibrosis. The combination of IK blockade and PVI prevented AF in simulations without fibrosis, with moderate fibrosis, and even with severe fibrosis. The combined therapy strongly decreased the number of fibrillation waves, due to a synergistic reduction of wavefront generation rate while the wavefront lifespan remained unchanged. CONCLUSION: Newly developed blockers of atrial-specific inward rectifier currents, such as IKAch, might prevent AF occurrences and when combined with PVI effectively supress AF recurrences in human.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Atrial Fibrillation/surgery , Computer Simulation , Humans , Pulmonary Veins/surgery , Recurrence , Treatment Outcome
19.
J Am Heart Assoc ; 10(2): e018572, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33410337

ABSTRACT

Background Short ECG P-wave duration has recently been demonstrated to be associated with higher risk of atrial fibrillation (AF). The aim of this study was to assess the rate of AF recurrence after pulmonary vein isolation in patients with a short P wave, and to mechanistically elucidate the observation by computer modeling. Methods and Results A total of 282 consecutive patients undergoing a first single-pulmonary vein isolation procedure for paroxysmal or persistent AF were included. Computational models studied the effect of adenosine and sodium conductance on action potential duration and P-wave duration (PWD). About 16% of the patients had a PWD of 110 ms or shorter (median PWD 126 ms, interquartile range, 115 ms-138 ms; range, 71 ms-180 ms). At Cox regression, PWD was significantly associated with AF recurrence (P=0.012). Patients with a PWD <110 ms (hazard ratio [HR], 2.20; 95% CI, 1.24-3.88; P=0.007) and patients with a PWD ≥140 (HR, 1.87, 95% CI, 1.06-3.30; P=0.031) had a nearly 2-fold increase in risk with respect to the other group. In the computational model, adenosine yielded a significant reduction of action potential duration 90 (52%) and PWD (7%). An increased sodium conductance (up to 200%) was robustly accompanied by an increase in conduction velocity (26%), a reduction in action potential duration 90 (28%), and PWD (22%). Conclusions One out of 5 patients referred for pulmonary vein isolation has a short PWD which was associated with a higher rate of AF after the index procedure. Computer simulations suggest that shortening of atrial action potential duration leading to a faster atrial conduction may be the cause of this clinical observation.


Subject(s)
Action Potentials , Atrial Fibrillation , Catheter Ablation , Electrocardiography/methods , Heart Conduction System , Postoperative Complications , Action Potentials/drug effects , Action Potentials/physiology , Adenosine/pharmacology , Anti-Arrhythmia Agents/pharmacology , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Catheter Ablation/adverse effects , Catheter Ablation/methods , Computer Simulation , Female , Heart Conduction System/drug effects , Heart Conduction System/physiopathology , Humans , Male , Middle Aged , Postoperative Complications/diagnosis , Postoperative Complications/etiology , Postoperative Complications/physiopathology , Pulmonary Veins/surgery , Recurrence , Sodium Channels/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...