Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Exp Physiol ; 107(8): 813-824, 2022 08.
Article in English | MEDLINE | ID: mdl-35710102

ABSTRACT

NEW FINDINGS: What is the central question of this study? Exercise training increases adropin and nitrite/nitrate (NOx) plasma levels in middle-aged and older healthy people. We hypothesized that high-intensity interval training may improve blood pressure and flow-mediated dilatation through the effects of adropin and NOx in patients of this age with type 2 diabetes. What is the main finding and its importance? High-intensity interval training may be more effective than moderate-intensity continuous training in improving endothelial function, blood pressure and flow-mediated dilatation through its effects on adropin and NOx in patients with type 2 diabetes. ABSTRACT: Adropin is a newly identified bioactive protein that is important in energy hemostasis and vascular endothelial function. Lower levels of adropin in patients with type 2 diabetes are related to coronary atherosclerosis, characterized by impaired flow-mediated dilatation (FMD). The purpose of the present study was to investigate FMD and plasma levels of adropin and nitrite/nitrate (NOx) in patients with type 2 diabetes at baseline and follow-up after 12 weeks of high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT). Sixty-six persons with type 2 diabetes were divided into HIIT, MICT, and control groups. The HIIT group intervention was 12 intervals (1.5 min) at 85-90% maximal heart rate (HRmax ) separated by 2 min at 55-60% HRmax in three sessions per week for 12 weeks. MICT training consisted of 42 min of cycling at 70% HRmax . Before and after the intervention, FMD was recorded with high-resolution Doppler ultrasound. Plasma levels of adropin and NOx were measured by enzyme-linked immunosorbent assay. After training FMD was significantly higher in the MICT and HIIT groups compared to the control group (P < 0.05). Plasma levels of adropin and NOx were higher in both exercise groups, but the increase was greater in the HIIT group (P < 0.01). Peak oxygen consumption was increased after exercise training in both groups compared to the control group (P < 0.01). Percentage FMD showed a positive correlation with plasma levels of adropin and NOx (both P < 0.01), and a negative correlation with diastolic blood pressure (r = -0.530, P = 0.035) and systolic blood pressure (r = -0.606, P = 0.013) in the HIIT group. The results indicate that HIIT improved FMD whilst increasing adropin, NOx and peak oxygen consumption. Increased plasma levels of adropin may contribute, in part, to blood pressure reduction by increasing nitric oxide production.


Subject(s)
Diabetes Mellitus, Type 2 , High-Intensity Interval Training , Aged , Blood Pressure/physiology , Dilatation , High-Intensity Interval Training/methods , Humans , Middle Aged , Nitrates , Nitrites
2.
J Diabetes Complications ; 34(1): 107469, 2020 01.
Article in English | MEDLINE | ID: mdl-31706805

ABSTRACT

AIMS: Carotid intima-media thickness (cIMT) is a validated surrogate marker of atherosclerosis. Dickkopf-1 (Dkk-1) and sclerostin modulate wingless signaling, which is involved in atherosclerosis. The purpose of this study was to investigate whether 12 weeks of high-intensity interval training (HIIT) would improve cIMT and serum Dkk-1 and sclerostin levels in patients with type 2 diabetes. METHODS: Seventy-four sedentary patients with type 2 diabetes were randomly divided into HIIT and control groups. The HIIT group intervention was 6 intervals (4 min) at 85%-90% HRmax separated by 3 min at 45%-50% HRmax in 3 sessions/week for 12 weeks. Before and after the intervention, cIMT, artery diameter and wall/lm ratio were recorded with high-resolution ultrasound. Serum sclerostin and Dkk-1 were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: cIMT decreased significantly in the HIIT group (0.83 ±â€¯0.17 baseline, 0.71 ±â€¯0.14 follow-up) compared to the control group (0.84 ±â€¯0.20 baseline, 0.85 ±â€¯0.19 follow-up) (P < .05). Dkk-1 and sclerostin decreased significantly after 12 weeks of HIIT (P < .01). In addition, VO2peak was increased in the HIIT group than the control group (by 6.2 mL/kg/min) (P < .05). There was a positive correlation between percent changes in cIMT and percent changes in Dkk-1 and sclerostin (both P < .01). Additionally, there were a negative correlation between percent changes VO2peak and cIMT (r = - 0.740, P = .003), Dkk-1 (r = - 0.844, P < .001) and sclerostin (r = - 0.575, P = .001) in HIIT group. CONCLUSION: Our results indicate that HIIT decreases cIMT, serum levels of Dkk-1 and sclerostin and improves VO2peak in patients with type 2 diabetes.


Subject(s)
Atherosclerosis/prevention & control , Diabetes Mellitus, Type 2/therapy , Diabetic Angiopathies/prevention & control , High-Intensity Interval Training , Adaptor Proteins, Signal Transducing/blood , Atherosclerosis/blood , Atherosclerosis/diagnosis , Biomarkers/blood , Carotid Intima-Media Thickness , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/physiopathology , Diabetic Angiopathies/blood , Diabetic Angiopathies/diagnosis , Female , Humans , Intercellular Signaling Peptides and Proteins/blood , Iran , Male , Middle Aged , Treatment Outcome , Ultrasonography
3.
Life Sci ; 221: 319-326, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30802510

ABSTRACT

AIM: Myocardial infarction (MI), an important cause of morbidity and mortality, can be followed by left ventricular dysfunction and cardiomyocyte loss. Cardiac repair mechanisms may subsequently improve left ventricular function. Exercise training has been suggested to have cardioprotective effects against MI damage, but detailed knowledge is lacking on the effects of different types and intensities of exercise training on molecular targets of cardiomyocyte regeneration. MAIN METHODS: MI was induced in male Wistar rats by ligating the left anterior descending coronary artery. After MI induction, the rats were randomly assigned to one of five groups: sham operated, and experimental MI followed by no exercise, or low, moderate or high intensity exercise Cardiac function and infarct size were assessed by echocardiography and Evans blue/TTC staining, respectively. The expression of mRNA markers and proteins associated with myocardial regeneration was measured with RT-PCR and western blotting. KEY FINDINGS: Exercise training at different intensities improved cardiac function and levels of stem cell and cardiomyocyte markers, and reduced infarct size. mRNA levels of GATA4, Nkx2.5 and c-Kit and protein expression of Nkx2.5 and c-Kit were significantly increased in all MI-exercise groups. The high-intensity exercise group had greater increases than the low and moderate intensity exercise groups. In the high-intensity exercise group, Sca-1 and CITED4 increased more than in the low-intensity exercise group. C/EBPß mRNA and protein levels decreased after exercise training, with greater reductions in the high-intensity exercise group than the low- or moderate-intensity groups. SIGNIFICANCE: The findings suggest that by targeting cardiogenesis, high-intensity training can exert cardioprotective effects against cardiac dysfunction in an experimental model of MI.


Subject(s)
Myocardial Infarction/metabolism , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Animals , CCAAT-Enhancer-Binding Protein-beta , Coronary Vessels , Disease Models, Animal , Echocardiography , GATA4 Transcription Factor/metabolism , High-Intensity Interval Training/methods , Homeobox Protein Nkx-2.5/metabolism , Male , Myocardium , Myocytes, Cardiac , Proto-Oncogene Proteins c-kit/metabolism , Rats , Rats, Wistar , Ventricular Function, Left
4.
J Aging Phys Act ; 27(3): 384-391, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30299198

ABSTRACT

To investigate the effects of resistance training and epicatechin supplementation on muscle strength, follistatin, and myostatin in older adults with sarcopenia, a total of 62 males with sarcopenia (68.63 ± 2.86 years) underwent a supervised 8-week randomized controlled trial. Participants were divided into resistance training (RT), epicatechin (EP), resistance training+epicatechin (RT+EP), and placebo (PL) in a double-blind method. A pretest and posttest measurement was conducted. One-way analysis of variance was used to analyze between-group differences. The significantly greatest increase was observed in follistatin, follistatin/myostatin ratio, leg press, and chest press in RT+EP comparing RT, EP, and PL groups, whereas myostatin decreased significantly only in RT+EP and RT groups. However, appendicular muscle mass index and timed up and go test were enhanced significantly in all experimental groups than the PL group (p ≤ .05). Consequently, by comparing the results between three experimental groups, the greatest improvement was detected in the RT+EP group. Therefore, using two interventions simultaneously seems to have a better impact on improving muscle growth factors and preventing the progression of sarcopenia.


Subject(s)
Catechin/administration & dosage , Follistatin/blood , Muscle, Skeletal/drug effects , Myostatin/blood , Resistance Training/methods , Sarcopenia/prevention & control , Aged , Biomarkers/blood , Catechin/pharmacology , Dietary Supplements , Female , Humans , Male , Muscle Strength/physiology , Muscle, Skeletal/physiology , Sarcopenia/blood , TGF-beta Superfamily Proteins/blood , Treatment Outcome
5.
J Cell Commun Signal ; 13(2): 255-267, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30073629

ABSTRACT

Regulated necrosis (necroptosis) plays a pivotal role in the extent of cardiomyocyte loss and the development of post-ischemic adverse remodelling and cardiac dysfunction following myocardial I/R injury. Although HIIT has been reported to give rise to cardioprotection against MI, but the detailed knowledge of its molecular targets for treatment of MI is still not available. The LAD of Male Wistar rats was occluded to induce MI for 30 min and reperfusion for eight weeks. We investigated the effect of long-term HIIT for eight weeks on lipid peroxidation, SOD activity and GSH content using ELISA assay. Cardiac function, fibrosis, and infarct size were assessed by echocardiography, Masson's trichrome and Evans Blue/TTC dual staining respectively. The expressions of gene markers of myocardial hypertrophy, fibrosis and key mediators of necroptosis were measured using RT-PCR and western blotting assay respectively. The results indicated that HIIT reduced lipid peroxidation, infarct size and improved endogenous antioxidant system and heart function. Significant decreases in mRNA levels of procollagen α1(I), α1(III), and fibronectin1were observed following HIIT. Moreover, that HIIT significantly decreased the expression of key mediators of necroptosis induced by MI (P < 0.05). There were no significant differences in ß-MHC mRNA level in different groups. The findings of study suggest that HIIT might exert cardioprotective effects against post-ischemic adverse remodeling through targeting necroptosis process. Likewise, cardioprotective effects of HIIT in coping with myocardial I/R injury may be associated with RIP1-RIP3-MLKL axis. These findings establish a critical foundation for higher efficiency of exercise-based cardiac rehabilitation post-MI and future research.

6.
Exp Physiol ; 103(9): 1264-1276, 2018 09.
Article in English | MEDLINE | ID: mdl-29932275

ABSTRACT

NEW FINDINGS: What is the central question of this study? Can low-volume high-intensity interval training and continuous moderate-intensity exercise modulate oscillatory and retrograde shear, blood flow and flow-mediated arterial dilatation in patients with type 2 diabetes? What is the main finding and its importance? Low-volume high-intensity interval training, by increasing anterograde shear and decreasing retrograde shear and oscillatory index, can increase nitric oxide production and consequently result in increased flow-mediated dilatation and outward arterial remodelling in patients with type 2 diabetes. ABSTRACT: Atherosclerosis in patients with type 2 diabetes is characterized by endothelial dysfunction associated with impaired flow-mediated dilatation (FMD) and increases retrograde and oscillatory shear. The present study investigated endothelium-dependent vasodilatation and shear rate in patients with type 2 diabetes at baseline and follow-up after 12 weeks of low-volume high-intensity interval training (LV-HIIT) or continuous moderate-intensity training (CMIT). Seventy-five sedentary patients with type 2 diabetes and untreated pre- or stage I hypertension were randomly divided into LV-HIIT, CMIT and control groups. The LV-HIIT group intervention was 12 intervals of 1.5 min at 85-90% maximal heart rate (HRmax ) and 2 min at 55-60% HRmax . The CMIT group intervention was 42 min of exercise at 70% HRmax for three sessions per week during 12 weeks. High-resolution Doppler ultrasound was used to measure FMD, arterial diameter, anterograde and retrograde blood flow, and shear rate patterns. Brachial artery FMD increased significantly in the LV-HIIT group (3.83 ± 1.13 baseline, 7.39 ± 3.6% follow-up), whereas there was no significant increase in the CMIT group (3.45 ± 0.97 baseline, 4.81 ± 2.36% follow-up) compared to the control group (3.16 ± 0.78 baseline, 4.04 ± 1.28% follow-up) (P < 0.05). Retrograde shear in the LV-HIIT group decreased significantly (P < 0.05), and no significant decrease in retrograde shear was seen in the CMIT group. Anterograde shear after LV-HIIT increased significantly (P < 0.05) but was unchanged in the CMIT group. However, oscillatory shear index in both exercise groups decreased significantly (P = 0.029). Nitrite/nitrate (NOx) level increased in both exercise groups, but the increase was greater in the LV-HIIT group (P < 0.001). The results indicate that by increasing NOx, HIIT decreases the oscillatory shear-induced improvement in FMD and outward artery remodelling in patients with type 2 diabetes.


Subject(s)
Brachial Artery/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/therapy , High-Intensity Interval Training/methods , Vasodilation , Brachial Artery/diagnostic imaging , Cardiovascular Diseases/physiopathology , Endothelium, Vascular/physiopathology , Female , Heart Rate/physiology , Humans , Male , Middle Aged , Nitric Oxide/blood , Physical Fitness , Risk Factors , Sedentary Behavior , Ultrasonography, Doppler
7.
J. physiol. biochem ; 74(1): 47-55, feb. 2018. graf, tab
Article in English | IBECS | ID: ibc-178917

ABSTRACT

Hypertension is the major risk factor for cardiovascular diseases and is one of the primary causes of morbidity and mortality worldwide. Apelin levels and NO bioavailability are impaired in older hypertensive patients. Exercise is an effective intervention for treating hypertension. Our purpose was to evaluate the effect of high-intensity interval training on blood pressure, apelin, and NOx plasma levels in older treated hypertensive individuals. Thirty treated hypertensive subjects (61.70 ± 5.78 years, 17 males, 13 females) were randomly divided into 6 weeks of high-intensity interval training (n = 15) and control (n = 15). The exercise training was conducted for three 35-min sessions a week (1.5-min interval at 85-90% of heart rate reserve [HRR] and 2 min active phase at 50-55% of HRR). Assessment of plasma apelin, nitrite/nitrate (NOx), and endothelin-1 (ET-1) was performed before and after the intervention. At the end of the study, apelin, and NOx plasma levels increased significantly in the high-intensity interval training (HIIT) group (P = 0.021, P = 0.003, respectively). Conversely, ET-1 plasma levels significantly decreased in the training group after the intervention (P = 0.015). Moreover, there was a positive correlation between the change of plasma apelin and change of plasma NOx (r = 0. 771, P = 0.0008). In addition, there was a negative correlation between the change of plasma ET-1, change of plasma apelin (r = - 0.595, P = 0.019), and variation of NOx (r = - 0.572, P = 0.025). This study indicates that, by increasing of apelin and NOx plasma levels, HIIT may be effective in reducing blood pressure


Subject(s)
Humans , Male , Female , Middle Aged , Aged , Aging , High-Intensity Interval Training , Hypertension/therapy , Nitric Oxide/blood , Antihypertensive Agents/therapeutic use , Biomarkers/blood , Combined Modality Therapy , Follow-Up Studies , Hypertension/physiopathology , Hypertension/drug therapy , Hypertension/metabolism , Oxygen Consumption , Severity of Illness Index
8.
J Physiol Biochem ; 74(1): 47-55, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29214526

ABSTRACT

Hypertension is the major risk factor for cardiovascular diseases and is one of the primary causes of morbidity and mortality worldwide. Apelin levels and NO bioavailability are impaired in older hypertensive patients. Exercise is an effective intervention for treating hypertension. Our purpose was to evaluate the effect of high-intensity interval training on blood pressure, apelin, and NOx plasma levels in older treated hypertensive individuals. Thirty treated hypertensive subjects (61.70 ± 5.78 years, 17 males, 13 females) were randomly divided into 6 weeks of high-intensity interval training (n = 15) and control (n = 15). The exercise training was conducted for three 35-min sessions a week (1.5-min interval at 85-90% of heart rate reserve [HRR] and 2 min active phase at 50-55% of HRR). Assessment of plasma apelin, nitrite/nitrate (NOx), and endothelin-1 (ET-1) was performed before and after the intervention. At the end of the study, apelin, and NOx plasma levels increased significantly in the high-intensity interval training (HIIT) group (P = 0.021, P = 0.003, respectively). Conversely, ET-1 plasma levels significantly decreased in the training group after the intervention (P = 0.015). Moreover, there was a positive correlation between the change of plasma apelin and change of plasma NOx (r = 0. 771, P = 0.0008). In addition, there was a negative correlation between the change of plasma ET-1, change of plasma apelin (r = - 0.595, P = 0.019), and variation of NOx (r = - 0.572, P = 0.025). This study indicates that, by increasing of apelin and NOx plasma levels, HIIT may be effective in reducing blood pressure.


Subject(s)
Aging , Apelin/blood , High-Intensity Interval Training , Hypertension/therapy , Nitric Oxide/blood , Aged , Antihypertensive Agents/therapeutic use , Biomarkers/blood , Blood Pressure , Combined Modality Therapy , Female , Follow-Up Studies , Heart Rate , Humans , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/physiopathology , Lost to Follow-Up , Male , Middle Aged , Oxygen Consumption , Patient Compliance , Severity of Illness Index
9.
ARYA Atheroscler ; 14(6): 260-271, 2018 Nov.
Article in English | MEDLINE | ID: mdl-31143227

ABSTRACT

BACKGROUND: Heart rate variability (HRV) declines after coronary artery bypass grafting (CABG). The purpose of this study was to evaluate the effect of low-volume high-intensity interval training (LV-HIIT) and moderate-intensity continuous training (MICT) on HRV as well as, hemodynamic and echocardiography indices. METHODS: Forty-two men after CABG (55.12 ± 3.97 years) were randomly assigned into LV-HIIT, MICT, and control (CTL) groups. The exercise training in LV-HIIT consisted of 2-minute interval at 85-95 percent of maximal heart rate (HRmax), 2-minute interval at 50% of HRmax and 40-minute interval at 70% of HRmax in MICT for three sessions in a week, for 6-weeks. HRV parameters were evaluated by 24-hour Holter electrocardiography (ECG) recording, and echocardiography parameters at baseline and end of intervention were measured in all 3 groups. RESULTS: At the end of the intervention, left ventricular ejection fraction (LVEF) significantly increased in LV-HIIT group (58.53 ± 7.26 percent) compared with MICT (52.26 ± 7.91 percent) and CTL (49.68 ± 7.27 percent) groups (P < 0.001). Furthermore, mean R-R interval, root mean square successive difference (RMSSD) of R-R interval, and standard deviation of R-R interval (SDRR) in LV-HIIT group considerably increased compared with MICT group (P < 0.001). High-frequency power (HF) significantly increased in LV-HIIT and MICT groups compared with CTL group (P < 0.001). On the other hand, low frequency (LF) and LF/HF ratio significantly decreased in LV-HIIT group in comparison with MICT group (P < 0.010). CONCLUSION: These results suggest that LV-HIIT has a greater effect on improvement of cardiac autonomic activities by increasing R-R interval, SDRR, RMSSD, and HF, and decreasing LF and LF/HF ratio in patients after CABG.

SELECTION OF CITATIONS
SEARCH DETAIL
...