Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34211580

ABSTRACT

Ever-growing research efforts are demonstrating the potential of medicinal plants and their phytochemicals to prevent and manage obesity, either individually or synergistically. Multiple combinations of phytochemicals can result in a synergistic activity that increases their beneficial effects at molecular, cellular, metabolic, and temporal levels, offering advantages over chemically synthesized drug-based treatments. Herbs and their derived compounds have the potential for controlling appetite, inhibiting pancreatic lipase activity, stimulating thermogenesis and lipid metabolism, increasing satiety, promoting lipolysis, regulating adipogenesis, and inducing apoptosis in adipocytes. Furthermore, targeting adipocyte life cycle using various dietary bioactives that affect different stages of adipocyte life cycle represents also an important target in the development of new antiobesity drugs. In this regard, different stages of adipocyte development that are targeted by antiobesity drugs can include preadipocytes, maturing preadipocytes, and mature adipocytes. Various herbal-derived active compounds, such as capsaicin, genistein, apigenin, luteolin, kaempferol, myricetin, quercetin, docosahexaenoic acid, quercetin, resveratrol, and ajoene, affect adipocytes during specific stages of development, resulting in either inhibition of adipogenesis or induction of apoptosis. Although numerous molecular targets that can be used for both treatment and prevention of obesity have been identified, targeted single cellular receptor or pathway has resulted in limited success. In this review, we discuss the state-of-the-art knowledge about antiobesity medicinal plants and their active compounds and their effects on several cellular, molecular, and metabolic pathways simultaneously with multiple phytochemicals through synergistic functioning which might be an appropriate approach to better management of obesity. In addition, epigenetic mechanisms (acetylation, methylation, miRNAs, ubiquitylation, phosphorylation, and chromatin packaging) of phytochemicals and their preventive and therapeutic perspective are explored in this review.

2.
Theor Appl Genet ; 122(2): 405-20, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20872209

ABSTRACT

Plant yield is the integrated outcome of processes taking place above and below ground. To explore genetic, environmental and developmental aspects of fruit yield in tomato, we phenotyped an introgression line (IL) population derived from a cross between the cultivated tomato (Solanum lycopersicum) and a wild species (Solanum pennellii). Both homozygous and heterozygous ILs were grown in irrigated and non-irrigated fields and evaluated for six yield components. Thirteen lines displayed transgressive segregation that increased agronomic yield consistently over 2 years and defined at least 11 independent yield-improving QTL. To determine if these QTL were expressed in the shoots or the roots of the plants, we conducted field trials of reciprocally grafted ILs; out of 13 lines with an effect on yield, 10 QTL were active in the shoot and only IL8-3 showed a consistent root effect. To further examine this unusual case, we evaluated the metabolic profiles of fruits from both the homo- and heterozygous lines for IL8-3 and compared these to those obtained from the fruit of their equivalent genotypes in the root effect population. We observed that several of these metabolic QTL, like the yield QTL, were root determined; however, further studies will be required to delineate the exact mechanism mediating this effect in this specific line. The results presented here suggest that genetic variation for root traits, in comparison to that present in the shoot, represents only a minor component in the determination of tomato fruit yield.


Subject(s)
Crops, Agricultural/growth & development , Crops, Agricultural/genetics , Fruit/growth & development , Fruit/genetics , Gene Expression Regulation, Plant/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/genetics , Chromosomes, Plant , Crops, Agricultural/metabolism , Droughts , Fruit/metabolism , Gene Expression Regulation, Plant/genetics , Genome, Plant , Genotype , Hybridization, Genetic , Israel , Solanum lycopersicum/metabolism , Phenotype , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Quantitative Trait Loci
3.
J IMA ; 43(2): 83-90, 2011 Jul.
Article in English | MEDLINE | ID: mdl-23610491

ABSTRACT

OBJECTIVE: To relate diverse aspects of genetics and its applications to concepts in the Glorious Qur'an and the hadith. STUDY DESIGN: The author compared passages from the Glorious Qur'an and hadith with modern concepts in genetics, such as recessive inheritance, genetic counseling, genetic variation, cytoplasmic inheritance, sex chromosomes, genetics-environment interactions, gender determination, and the hypothesis of "pairing in the universe." CONCLUSIONS: A fresh understanding of Islamic scripture reveals references to principles of genetics that predate contemporary discoveries. This highlights the need for further exploration of possible links between science and religion.

4.
Genetics ; 173(2): 1075-87, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16582432

ABSTRACT

An ultradense genetic linkage map with >10,000 AFLP loci was constructed from a heterozygous diploid potato population. To our knowledge, this is the densest meiotic recombination map ever constructed. A fast marker-ordering algorithm was used, based on the minimization of the total number of recombination events within a given marker order in combination with genotyping error-detection software. This resulted in "skeleton bin maps," which can be viewed as the most parsimonious marker order. The unit of distance is not expressed in centimorgans but in "bins." A bin is a position on the genetic map with a unique segregation pattern that is separated from adjacent bins by a single recombination event. Putative centromeres were identified by a strong clustering of markers, probably due to cold spots for recombination. Conversely, recombination hot spots resulted in large intervals of up to 15 cM without markers. The current level of marker saturation suggests that marker density is proportional to physical distance and independent of recombination frequency. Most chromatids (92%) recombined once or never, suggesting strong chiasma interference. Absolute chiasma interference within a chromosome arm could not be demonstrated. Two examples of contig construction and map-based cloning have demonstrated that the marker spacing was in accordance with the expected physical distance: approximately one marker per BAC length. Currently, the markers are used for genetic anchoring of a physical map of potato to deliver a sequence-ready minimal tiling path of BAC contigs of specific chromosomal regions for the potato genome sequencing consortium (http://www.potatogenome.net).


Subject(s)
Genome, Plant , Solanum tuberosum/genetics , Chromosome Mapping , Diploidy , Genetic Markers , Heterozygote , Meiosis/genetics , Quantitative Trait Loci , Recombination, Genetic , Restriction Mapping
5.
Genetics ; 165(4): 2107-16, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14704190

ABSTRACT

Segregation data were obtained for 1260 potato linkage group I-specific AFLP loci from a heterozygous diploid potato population. Analytical tools that identified potential typing errors and/or inconsistencies in the data and that assembled cosegregating markers into bins were applied. Bins contain multiple-marker data sets with an identical segregation pattern, which is defined as the bin signature. The bin signatures were used to construct a skeleton bin map that was based solely on observed recombination events. Markers that did not match any of the bin signatures exactly (and that were excluded from the calculation of the skeleton bin map) were placed on the map by maximum likelihood. The resulting maternal and paternal maps consisted of 95 and 101 bins, respectively. Markers derived from EcoRI/MseI, PstI/MseI, and SacI/MseI primer combinations showed different genetic distributions. Approximately three-fourths of the markers placed into a bin were considered to fit well on the basis of an estimated residual "error rate" of 0-3%. However, twice as many PstI-based markers fit badly, suggesting that parental PstI-site methylation patterns had changed in the population. Recombination frequencies were highly variable across the map. Inert, presumably centromeric, regions caused extensive marker clustering while recombination hotspots (or regions identical by descent) resulted in empty bins, despite the level of marker saturation.


Subject(s)
Genetic Linkage , Genetic Markers , Genome, Plant , Meiosis , Solanum tuberosum/genetics , Chromosome Mapping , Chromosome Segregation , DNA Methylation , Heterozygote , Random Amplified Polymorphic DNA Technique , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL