Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32190213

ABSTRACT

Background. The most common problem associated with dental implants is the abutment screw loosening. This research aimed to investigate the effect of the type of connection on screw loosening, using a finite element method (FEM). Methods. Periosave system and different types of the implant-abutment connection were used for modeling. After being measured, CAD files were modeled using CATIA software and imported to the ANSYS analysis software, and the model was loaded. Results. A force of 100 N was applied at 0.1 second, and no force was applied at 0.42 second. The screw head deformation at 0.1 and 0.42 seconds was 8 and 3.8 µm, and 7.6 and 2.8 µm at morse taper and octagon dental implant connections, respectively. The displacement rate of the internal surface of the abutment at 0.1 and 0.42 seconds was 10.7 and 8.4 µm, and 5.7 and 5.6 µm in the octagon and morse taper dental implant connections, respectively. The displacement of the implant suprastructure-abutment interface from the screw head at 0.1 and 0.42 seconds was 9 and 7 µm, and 7 and 6 µm in the morse taper and octagon dental implant connections, respectively. At intervals of 0 to 0.1 seconds and 0.6 to 0.8 seconds, the octagon connection was separated at the maximum screw head displacement and the internal part of the abutment, but the morse taper connection did not exhibit any separation. In the above time intervals, the results were similar to the maximum state in case of the minimum displacement of the screw head and the internal part of the abutment. Conclusion. Screw loosening is less likely to occur in the morse hex connection compared to the octagon connection due to the lack of separation of the screw from the internal surface of the abutment.

2.
Article in English | MEDLINE | ID: mdl-29184635

ABSTRACT

Background. The aim of the present study was to evaluate the effect of Corega and 2.5% sodium hypochlorite cleansing agents on the shear and tensile bond strengths of GC soft liner to denture base. Methods. A total of 144 samples (72 samples for tensile and 72 for shear bond strength evaluations) were prepared. The samples in each group were subdivided into three subgroups in terms of the cleansing agent used (2.5% sodium hypochlorite, Corega and distilled water [control group]). All the samples were stored in distilled water, during which each sample was immersed for 15 minutes daily in sodium hypochlorite or Corega solutions. After 20 days the tensile and shear bond strengths were determined using a universal testing machine. In addition, a stereomicroscope was used to evaluate fracture modes. Data were analyzed with one-way ANOVA, using SPSS 16. Results. The results of post hoc Tukey tests showed significant differences in the mean tensile and shear bond strength values between the sodium hypochlorite group with Corega and control groups (P=0.001 for comparison of tensile bond strengths between the sodium hypochlorite and control groups, and P<0.001 for the comparison of tensile bond strengths between the sodium hypochlorite and Corega groups and the shear bond strengths between the sodium hypochlorite and Corega groups, and sodium hypochlorite and control groups).The majority of failures were cohesive in the control and Corega groups and cohesive/adhesive in the sodium hypochlorite group. Conclusion. Immersion of soft liners in Corega will result in longevity of soft liners compared to immersion in sodium hypochlorite solution and sodium hypochlorite solution significantly decreased the tensile and shear bond strengths compared to the control and Corega groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...